精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是________.

 

(-∞,-3)∪(6,+∞)

【解析】f′(x)=3x2+2mx+m+6=0有两个不等实根,即Δ=4m2-12×(m+6)>0.所以m>6或m<-3.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届高考苏教数学(理)训练4 函数及其表示(解析版) 题型:解答题

规定[t]为不超过t的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x,令f1(x)=[4x],g(x)=4x-[4x],进一步令f2(x)=f1[g(x)].

(1)若x=,分别求f1(x)和f2(x);

(2)若f1(x)=1,f2(x)=3同时满足,求x的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练17 任意角和弧度制及任意角的三角函数(解析版) 题型:填空题

满足cos α≤-的角α的集合为________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练16 导数与函数的综合问题(解析版) 题型:填空题

函数f(x)=ax3+x恰有三个单调区间,则a的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练15 导数与函数极值、最值(解析版) 题型:解答题

已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.

(1)当a=1时,求函数f(x)的最小值;

(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;

(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练15 导数与函数极值、最值(解析版) 题型:填空题

当函数y=x·2x取极小值时,x=________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练14 导数与函数单调性(解析版) 题型:填空题

若函数f(x)=x2+ax+上是增函数,则a的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练11 函数与方程(解析版) 题型:填空题

已知0<a<1,k≠0,函数f(x)=,若函数g(x)=f(x)-k有两个零点,则实数k的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学训练3 简单的逻辑联结词、全称量词与存在量词(解析版) 题型:填空题

已知集合A={(x,y)|x|+|y|≤1},B={(x,y)|x2+y2≤r2,r>0},若“点(x,y)∈A”是“点(x,y)∈B”的必要不充分条件,则r的最大值是________.

 

查看答案和解析>>

同步练习册答案