1£®Îªµ÷²îѧÉúµÄÉíÌåËØÖÊÇé¿ö£¬Ä³½ÌÓý¾Ö´Óµ±µØ¸÷Ñ§Ð£Ëæ»ú³éµ÷50ÃûѧÉú£¬½øÐÐÎåÏîÌåÄÜ´ï±ê¿¼ºË£¬²¢¶Ôÿ¸öѧÉú¿¼ºË³É¼¨½øÐÐͳ¼Æ£¬ÇëÄã¸ù¾ÝÉÐδÍê³ÉµÄƵÂÊ·Ö²¼±í£¬½â´ðÏÂÁÐÎÊÌ⣺
·Ö×é50-6060-7070-8080-9090-100ºÏ¼Æ
ƵÊý1b18c450
ƵÂÊa0.240.36de1
£¨1£©Çó±íÖÐa¡¢b¡¢c¡¢d¡¢eµÄÖµ£»
£¨2£©×÷³öƵÂÊ·Ö²¼Ö±·½Í¼£¬²¢¹ÀËã³É¼¨µÄÖÐλÊý£®

·ÖÎö £¨1£©¸ù¾Ý±íÖÐÊý¾Ý£¬ÀûÓÃÆµÂÊ=$\frac{ƵÊý}{Ñù±¾ÈÝÁ¿}$£¬Çó³öa¡¢b¡¢c¡¢d¡¢eµÄÖµ£»
£¨2£©¸ù¾ÝƵÂÊ·Ö²¼±í£¬×÷³öƵÂÊ·Ö²¼Ö±·½Í¼£¬ÀûÓÃÆµÂÊ·Ö²¼Ö±·½Í¼£¬¹ÀËã³É¼¨µÄÖÐλÊý£®

½â´ð ½â£º£¨1£©¸ù¾Ý±íÖÐÊý¾Ý£¬µÃ£»
a=$\frac{1}{50}$=0.02£¬
b=50¡Á0.24=12£¬
c=50-1-12-18-4=15£¬
d=$\frac{15}{50}$=0.30£¬
e=$\frac{4}{50}$=0.08£»
£¨2£©¸ù¾ÝƵÂÊ·Ö²¼±í£¬×÷³öƵÂÊ·Ö²¼Ö±·½Í¼£¬ÈçÏ£»

¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬µÃ£»
0.02+0.24=0.36£¼0.50£¬
0.36+0.36=0.72£¾0.50£¬
¡àÖÐλÊýÓ¦ÔÚ70¡«80Ö®¼ä£¬
ÉèÖÐλÊýΪx£¬
Ôò0.36+£¨x-70£©¡Á0.036=0.5£¬
½âµÃx=74£¬
¡à¹ÀËã³É¼¨µÄÖÐλÊýΪ74£®

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ¡¢ÆµÊýÓëÑù±¾ÈÝÁ¿µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁË»­ÆµÂÊ·Ö²¼Ö±·½Í¼ÒÔ¼°ÀûÓÃÖ±·½Í¼ÇóÖÐλÊýµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚ×ø±êÖáÉϵÄÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ËüµÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬Ò»¸ö½¹µãÊÇ£¨-1£¬0£©£¬¹ýÖ±Ïßx=4ÉÏÒ»µãÒýÍÖÔ²EµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðÊÇA¡¢B£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈôÔÚÍÖÔ²E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©Éϵĵ㣨x0£¬y0£©´¦µÄÇÐÏß·½³ÌÊÇ$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1£®ÇóÖ¤£ºÖ±ÏßABºã¹ý¶¨µãC£¬²¢Çó³ö¶¨µãCµÄ×ø±ê£»
£¨¢ó£©ÇóÖ¤£º|AC|+|BC|=$\frac{4}{3}$|AC|•|BC|£¨µãCΪֱÏßABºã¹ýµÄ¶¨µã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª½áÂÛ£º¡°ÔÚ¡÷ABCÖУ¬¸÷±ßºÍËüËù¶Ô½ÇµÄÕýÏÒ±ÈÏàµÈ£¬¼´$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$¡±£¬Èô°Ñ¸Ã½áÂÛÍÆ¹ãµ½¿Õ¼ä£¬ÔòÓнáÂÛ£º¡°ÔÚÈýÀâ×¶A-BCDÖУ¬²àÀâABÓëÆ½ÃæACD¡¢Æ½ÃæBCDËù³ÉµÄ½ÇΪ¦Á¡¢¦Â£¬ÔòÓУ¨¡¡¡¡£©¡±
A£®$\frac{BC}{sin¦Á}=\frac{AD}{sin¦Â}$B£®$\frac{AD}{sin¦Á}=\frac{BC}{sin¦Â}$
C£®$\frac{{{S_{¡÷BCD}}}}{sin¦Á}=\frac{{{S_{¡÷ACD}}}}{sin¦Â}$D£®$\frac{{{S_{¡÷ACD}}}}{sin¦Á}=\frac{{{S_{¡÷BCD}}}}{sin¦Â}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ax-2lnx£¬a¡ÊR
£¨¢ñ£©µ±a=3ʱ£¬Çóº¯ÊýÔÚ£¨1£¬f£¨1£©£©µÄÇÐÏß·½³Ì
£¨¢ò£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ò»¸öÕý·½ÌåµÄ¶Ô½ÇÏß³¤Îª3$\sqrt{3}$£¬ÔòÕâ¸öÕý·½ÌåµÄÀⳤΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®f£¨x£©=£¨2-x£©6-6x£¨2-x£©5µÄÕ¹¿ªÊ½ÖУ¬º¬x3ÏîµÄϵÊýΪ-640£¨ÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¹ýµãA£¨-$\frac{{\sqrt{2}}}{2}$£¬$\frac{{\sqrt{3}}}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬µãF1£¬F2·Ö±ðΪÆä×óÓÒ½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Èôy2=4xÉÏ´æÔÚÁ½¸öµãM£¬N£¬ÍÖÔ²ÉÏÓÐÁ½¸öµãP£¬QÂú×㣬M£¬N£¬F2Èýµã¹²Ïߣ¬P£¬Q£¬F2Èýµã¹²Ïߣ¬ÇÒPQ¡ÍMN£®ÇóËıßÐÎPMQNÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªx£¬y¡ÊR£¬$\overrightarrow{i}$£¬$\overrightarrow{j}$Ϊֱ½Ç×ø±êÆ½ÃæÄÚx£¬yÖáÕý·½ÏòÉϵĵ¥Î»ÏòÁ¿£¬ÈôÏòÁ¿$\overrightarrow{a}$=x$\overrightarrow{i}$+£¨y+$\sqrt{3}$£©$\overrightarrow{j}$£¬$\overrightarrow{b}$=x$\overrightarrow{i}$+£¨y-$\sqrt{3}$£©$\overrightarrow{j}$£¬ÇÒ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£®
£¨¢ñ£©ÇóµãM£¨x£¬y£©µÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©¹ýÅ×ÎïÏßC2£ºy=x2+h£¨h¡ÊR£©ÉÏPµãµÄÇÐÏßÓëÍÖÔ²C1½»ÓÚÁ½µãM¡¢N£¬ÒÑÖªAµãµÄ×ø±êΪ£¨1£¬0£©£¬¼ÇÏß¶ÎMNÓëPAµÄÖеã·Ö±ðΪG¡¢H£¬µ±GHÓëyÖáÆ½ÐÐʱ£¬ÇóhµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¶¯Ö±Ïßl£ºy=kx+kºã¹ýÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µãA£¬¶¥µãBÓëA¹ØÓÚ×ø±êÔ­µãO¶Ô³Æ£¬¸ÃÍÖÔ²µÄÒ»¸ö½¹µãFÂú×ã¡ÏFAB=30¡ã£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨¢ò£©Èç¹ûµãCÂú×ã3$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow{0}$£¬µ±k=$\frac{2}{3}$ʱ£¬¼ÇÖ±ÏßlÓëÍÖÔ²EµÄÁíÒ»¸ö¹«¹²µãΪP£¬Çó¡ÏBPCƽ·ÖÏßËùÔÚÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸