精英家教网 > 高中数学 > 题目详情
学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若满意度不低于98分,则评价该教师为“优秀”.求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(Ⅲ)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差,众数、中位数、平均数,互斥事件的概率加法公式
专题:应用题,概率与统计
分析:(Ⅰ)根据所给的茎叶图以及众数和中位数的概念,得出众数与中位数;
(Ⅱ)设Ai表示所取3人中有i个人评价该教师为“优秀”,至多有1人评价该教师为“优秀”记为事件A,则P(A)=P(A0)+P(A1),可得答案.
(Ⅲ)ξ可以取0,1,2,3,利用独立事件概率公式,可求出ξ的分布列,代入数学期望公式,可得答案.
解答: 解:(Ⅰ)根据茎叶图知,这组数据的众数:87;中位数:88.5                     …(2分)
(Ⅱ)设Ai表示所取3人中有i个人评价该教师为“优秀”,至多有1人评价该教师为“优秀”记为事件A,则P(A)=P(A0)+P(A1)=
C
3
7
C
3
10
+
C
1
3
C
2
7
C
3
10
=
49
60
  …(6分)
(Ⅲ)ξ的可能取值为0、1、2、3                                 …(7分)      
P(ξ=0)=(
7
10
)3
=
342
1000
;P(ξ=1)=
C
1
3
3
10
•(
7
10
)2
=
441
1000

P(ξ=2)=
C
2
3
•(
3
10
)2
7
10
=
189
1000
;P(ξ=3)=(
3
10
)3
=
27
1000

分布列为
ξ 0    1 2 3
P
342
1000
441
1000
189
1000
27
1000
…(11分)
Eξ=0×
342
1000
+1×
441
1000
+2×
189
1000
+3×
27
1000
=0.9.…(12分)
点评:本题考查的知识点是离散型随机变量的期望,茎叶图,古典概型,是概率与统计的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“ab<0”是“方程ax2+by2=c(a、b、c∈R)表示双曲线”的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(3,4),
b
=(9,x),
c
=(4,y),
a
b
a
c

(1)求
a
b

(2)若
m
=2
a
-
b
n
=
a
+c,求向量
m
n
夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

近年来,我国的高铁技术发展迅速,铁道部门计划在A、B两城之间开通高速列车,假设在试运行期间,每天8:00-9:00,9:00-10:00两个时间段内各发一趟列车由A城到B城(两车发车情况互不影响),A城发车时间及其概率如表所示:
发车时间8:108:308:509:109:309:50
概率
1
6
1
2
1
3
1
6
1
2
1
3
若甲、乙两位旅客打算从A城到B城,假设他们到达A城火车站候车的时间分别是周六8:00和周日8:20.(只考虑候车时间,不考虑其它因素)
(1)设乙候车所需时间为随机变量X,求X的分布列和数学期望;
(2)求甲、乙二人候车时间相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,点P(a,a)(a>0)在抛物线上,且|PF|=
5
4

(1)求抛物线C的方程;
(2)设直线y=kx+b与抛物线交于A,B两点.
 ①当k=1,b=-4时,求证:点H(2,0)为△PAB的垂心;
 ②若△PAB的垂心为点H(m,0)(m>1),试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某中学举办的校园文化周活动中,从周一到周五的五天中,每天安排一项内容不同的活动供学生选择参加,要求每位学生必须参加三项活动.其中甲同学必须参加周一的活动,不参加周五的活动,其余的三天的活动随机选择两项参加.乙同学和丙同学可以在周一到周五中随机选择三项参加.
(1)求甲同学选周三的活动且乙同学未选周三的活动的概率;
(2)设X表示甲,乙,丙三名同学选择周三的活动的人数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),(ω>0,A>0,φ∈(0,
π
2
))的部分图象如图所示,其中点P是图象的一个最高点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知α∈(π,
2
),且f(
α
2
-
12
)=
12
13
,求f(
α
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线l与椭圆E相交于P,Q两点,且|PQ|的最大值为2
6


(Ⅰ)求椭圆E的方程;
(Ⅱ)设
AP
AQ
(λ>1),过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且a1=3,an=2Sn-1+3n(n≥2),则该数列的通项公式为an=
 

查看答案和解析>>

同步练习册答案