精英家教网 > 高中数学 > 题目详情
3.如图,沿格子型路线从点A到点C,如果只能向右、向上走,则经过点B的概率是$\frac{4}{7}$.

分析 沿格子型路线从点A出发,且只能向右或向上走,到达C点有七种走法,其中经过B点的有四种走法,由此求得经过点B的概率.

解答 解:沿格子型路线从点A出发,且只能向右或向上走,

到达D,E,F,G点只有一种走法;
到达B,H点有两种走法;
到达K点有三种走法;
到达I点有四种走法;
到达C点有七种走法,
其中经过B点的有四种走法,
故经过点B的概率P=$\frac{4}{7}$,
故答案为:$\frac{4}{7}$

点评 本题主要考查古典概型,解决古典概型问题时最有效的工具是列举,要求能通过列举解决古典概型问题,也有一些题目需要借助于排列组合来计数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.A={x|(a-2)x2-2(a-2)x-4<0},若A=R(R为实数集),则实数a的取值范围为(  )
A.(-2,2)B.(-2,+∞)C.(-2,2]D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y=$\frac{1}{4}$x2,点F(0,1),过点F的直线l交抛物线于A、B两点.
(1)若直线l的斜率为1,求A、B的中点坐标和S△OAB
(2)求△OAB的面积为2,求直线l的方程;
(3)是否存在直线m使得以AB为直径的圆始终与直线m相切.(提示:利用对称性,再画一个圆,猜想出m的位置后再利用特殊圆的位置求出直线m的方程,再证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有甲,乙2名男生,4名女生全体排成一行,问下列情形各有多少种不同的排法?
(1)甲、乙相邻;
(2)甲、乙互不相邻;
(3)甲不能排在最左端,乙不能排在最右端.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线y2=4$\sqrt{2}$x的焦点为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B.经过椭圆左焦点的直线l与椭圆交于C、D两点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2,且|S1-S2|=2,求直线l的方程;
(Ⅲ)若M(x1,y1),N(x2,y2)是椭圆上的两动点,且满足x1x2+2y1y2=0,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$(其中O为坐标原点),求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知一物体从100米高处落下,若落下的距离h与落下的时间t之间的函数关系式为h=$\frac{1}{2}$gt2,g以10m/s2计,则经过3s后,该物体离地面的高度为(  )
A.45米B.55米C.70米D.10米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}、{bn}满足:a1=4,an+1=$\sqrt{{a}_{n}+2}$,bn=an-1(n∈N*).
(1)判断并证明数列{an}的单调性;
(2)是否存在常数λ,使得b1b2b3…bn<λ?若存在,求λ的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知(5x2+$\frac{1}{{x}^{2}}$+1)5的展开式中,x2项的系数为2025.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆C的方程为x2+y2+2x-8=0,则圆C关于点(1,-2)对称的圆的方程为(  )
A.(x+2)2+(y+2)2=9B.(x+2)2+(y+2)2=3C.(x-3)2+(y+4)2=9D.(x-3)2+(y+4)2=3

查看答案和解析>>

同步练习册答案