18£®ÒÑÖªÅ×ÎïÏßy2=4$\sqrt{2}$xµÄ½¹µãΪÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µã£¬ÇÒÍÖÔ²µÄ³¤Ö᳤Ϊ4£¬×óÓÒ¶¥µã·Ö±ðΪA£¬B£®¾­¹ýÍÖÔ²×ó½¹µãµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚC¡¢DÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨¢ò£©¼Ç¡÷ABDÓë¡÷ABCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬ÇÒ|S1-S2|=2£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ó£©ÈôM£¨x1£¬y1£©£¬N£¨x2£¬y2£©ÊÇÍÖÔ²ÉϵÄÁ½¶¯µã£¬ÇÒÂú×ãx1x2+2y1y2=0£¬¶¯µãPÂú×ã$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£®

·ÖÎö £¨¢ñ£©Í¨¹ýÅ×ÎïÏߵĽ¹µã£¬Çó³öÍÖÔ²ÖеÄc£¬ÍÖÔ²µÄ³¤ÖáΪ4µÃa£¬È»ºóÇó½âÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨¢ò£© ·½·¨Ò»£ºÉèÖ±Ïßl£º$x=my-\sqrt{2}$£¬´úÈëÍÖÔ²·½³Ì£¬ÉèC£¨x1£¬y1£©¡¢D£¨x2£¬y2£©£¬Í¨¹ýÃæ»ý¹ØÏµÇó³öm£¬È»ºóÇó½âÖ±Ïß·½³Ì£®
·½·¨¶þ£ºµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬ÍƳö¡÷ABD£¬¡÷ABCÃæ»ýÏàµÈ£¬µ±Ö±ÏßlбÂÊ´æÔÚ£¨ÏÔÈ»k¡Ù0£©Ê±£¬ÉèÖ±Ïß·½³ÌΪ$y=k£¨x+\sqrt{2}£©£¨k¡Ù0£©$£¬ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©ºÍÍÖÔ²·½³ÌÁªÁ¢£¬Í¨¹ý|S1-S2|=|2||y2|-|y1|Çó³ö$k=¡À\frac{{\sqrt{2}}}{2}$£¬µÃµ½Ö±Ïß·½³Ì£®
£¨¢ó£©ÉèP£¨xP£¬yP£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃ$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$£¬½áºÏx1x2+2y1y2=0¡­¢Ú£¬M£¬NÊÇÍÖÔ²ÉÏµÄµã£¬ÍÆ³ö${{x}_{p}}^{2}+2{{y}_{p}}^{2}=20$£¬¿ÉµÃµãPµÄ¹ì¼£·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÉè¿ÉÖª£ºÒòΪÅ×ÎïÏßy2=4$\sqrt{2}$xµÄ½¹µãΪ£¨$\sqrt{2}$£¬0£©£¬ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µã£¬¿ÉµÃc=$\sqrt{2}$£¬ÇÒÍÖÔ²µÄ³¤Ö᳤Ϊ4£¬ËùÒÔÍÖÔ²ÖеÄa=2£¬¡àb=$\sqrt{2}$£®
¹ÊÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£®
£¨¢ò£© ·½·¨Ò»£ºÉèÖ±Ïßl£º$x=my-\sqrt{2}$£¬$\left\{\begin{array}{l}\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1\\ x=my-\sqrt{2}\end{array}\right.$£¬
$x=my-\sqrt{2}$´úÈëÍÖÔ²·½³ÌµÃ$£¨{{m^2}+2}£©{y^2}-2\sqrt{2}my-2=0$£¬
ÉèC£¨x1£¬y1£©D£¨x2£¬y2£©£¬A£¨-2£¬0£©B£¨2£¬0£©${y_1}+{y_2}=\frac{{2\sqrt{2}m}}{{{m^2}+2}}$
ÓÚÊÇ$|{{S_1}-{S_2}}|=\frac{1}{2}¡Á4¡Á|{|{y_1}|-|{y_2}|}|=2¡Á|{{y_1}+{y_2}}|$=$2¡Á\frac{{2\sqrt{2}|m|}}{{{m^2}+2}}=2$
ËùÒÔ$m=¡À\sqrt{2}$
¹ÊÖ±ÏßlµÄ·½³ÌΪ$x¡À\sqrt{2}y+\sqrt{2}=0$
·½·¨¶þ£ºµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬Ö±Ïß·½³ÌΪ$x=-\sqrt{2}$£¬
´Ëʱ¡÷ABD£¬¡÷ABCÃæ»ýÏàµÈ£¬|S1-S2|=0
µ±Ö±ÏßlбÂÊ´æÔÚ£¨ÏÔÈ»k¡Ù0£©Ê±£¬ÉèÖ±Ïß·½³ÌΪ$y=k£¨x+\sqrt{2}£©£¨k¡Ù0£©$
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©
ºÍÍÖÔ²·½³ÌÁªÁ¢µÃµ½$\left\{{\begin{array}{l}{\frac{x^2}{4}+\frac{y^2}{2}=1}\\{y=k£¨x+\sqrt{2}£©}\end{array}}\right.$£¬ÏûµôyµÃ$£¨1+2{k^2}£©{x^2}+4\sqrt{2}{k^2}x+4{k^2}-4=0$
ÏÔÈ»¡÷£¾0£¬·½³ÌÓиù£¬ÇÒ${x_1}+{x_2}=\frac{{-4\sqrt{2}{k^2}}}{{1+2{k^2}}}$
´Ëʱ|S1-S2|=|2||y2|-|y1||=2|y2+y1|=$2|k£¨{x_1}+\sqrt{2}£©+k£¨{x_2}+\sqrt{2}£©|$
=$2|k£¨{x_1}+{x_2}£©+2\sqrt{2}k|=\frac{{2\sqrt{2}|k|}}{{1+2{k^2}}}$
ÒòΪk¡Ù0£¬ÉÏʽ$\frac{{2\sqrt{2}|k|}}{{1+2{k^2}}}=2$£¬
½âµÃ$k=¡À\frac{{\sqrt{2}}}{2}$£¬ËùÒÔÖ±Ïß·½³ÌΪ$x¡À\sqrt{2}y+\sqrt{2}=0$£®
£¨¢ó£©ÉèP£¨xP£¬yP£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$¿ÉµÃ£º
$\left\{\begin{array}{l}{x}_{P}={x}_{1}+{2x}_{2}\\{y}_{P}={y}_{1}+{2y}_{2}\end{array}\right.$¡­¢Ù£¬
x1x2+2y1y2=0¡­¢Ú£¬M£¬NÊÇÍÖÔ²Éϵĵ㣬
¹Ê${{x}_{1}}^{2}+2{{y}_{1}}^{2}=4$£¬
${{x}_{2}}^{2}+2{{y}_{2}}^{2}=4$£¬
Óɢ٢ڿɵãº${{x}_{p}}^{2}+2{{y}_{p}}^{2}=£¨{{x}_{1}+{2x}_{2}£©}^{2}+2£¨{y}_{1}+{2y}_{2}£©^{2}$=${{x}_{1}}^{2}+2{{y}_{1}}^{2}+4£¨{{x}_{2}}^{2}+2{{y}_{2}}^{2}£©$£¬
¹Ê${{x}_{p}}^{2}+2{{y}_{p}}^{2}=20$£¬¼´µãPµÄ¹ì¼£·½³ÌÊÇ$\frac{{{x}_{p}}^{2}}{20}+\frac{{{y}_{p}}^{2}}{10}=1$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬹켣·½³ÌµÄÇ󷨣¬ÏÒ³¤¹«Ê½µÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¶ÔÈÎÒ⸴Êý¦Ø1£¬¦Ø2£¬¶¨Ò妨1*¦Ø2=¦Ø1$\overline{{¦Ø}_{2}}$£¬ÆäÖÐ$\overline{{¦Ø}_{2}}$ÊǦØ2µÄ¹²éÊý£®¶ÔÈÎÒ⸴Êýz1£¬z2£¬z3£¬ÓÐÈçÏÂËĸöÃüÌ⣺
¢Ù£¨z1+z2£©*z3=£¨z1*z3£©+£¨z2*z3£©£»
¢Úz1*£¨z2+z3£©=£¨z1*z2£©+£¨z1*z3£©£»
¢Û£¨z1*z2£©*z3=z1*£¨z2*z3£©£»
¢Üz1*z2=z2*z1£®
ÔòÕæÃüÌâÊÇ¢Ù¢Ú£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªF1£¬F2ΪÍÖÔ²C£º$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1µÄ½¹µã£¬µãPΪÍÖÔ²CÉϵ͝µã£¬Èô|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|¡Ý1£¬Ôò$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|\overrightarrow{P{F}_{1}}|-|\overrightarrow{P{F}_{2}}|}$µÄ×î´óÖµÓë×îСֵ·Ö±ðΪ£¨¡¡¡¡£©
A£®$\frac{9}{4}$£¬$\sqrt{2}$B£®$\frac{3}{2}$£¬$\sqrt{2}$C£®$\frac{9}{4}$£¬$\frac{17}{12}$D£®$\frac{9}{4}$£¬$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈôaΪµÚ¶þÏóÏ޽ǣ¬$\frac{|sin¦Á|}{sin¦Á}$-$\frac{cos¦Á}{|cos¦Á|}$+$\frac{{|{tan¦Á}|}}{tan¦Á}$=£¨¡¡¡¡£©
A£®0B£®1C£®2D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚÈñ½Ç¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬sin2A=sin2B+sin2C-sinBsinC£¬a=2$\sqrt{3}$£¬Ôòb+cµÄȡֵ·¶Î§ÊÇ£¨6£¬4$\sqrt{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ñظñ×ÓÐÍ·Ïß´ÓµãAµ½µãC£¬Èç¹ûÖ»ÄÜÏòÓÒ¡¢ÏòÉÏ×ߣ¬Ôò¾­¹ýµãBµÄ¸ÅÂÊÊÇ$\frac{4}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª½Ç¦ÁÊÇÈý½ÇÐεÄÄڽǣ¬ÇÒtan¦Á+$\frac{1}{tan¦Á}$=-$\frac{10}{3}$£¬Ôòcos2¦Á=£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®-$\frac{3}{4}$C£®¡À$\frac{4}{5}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®º¬2n+1ÏîµÄµÈ²îÊýÁУ¬ÆäÆæÊýÏîµÄºÍÓëżÊýÏîµÄºÍÖ®±ÈΪ¶àÉÙ£¿ÄÜ·Ö±ðÇó³öÆæÊýÏîºÍÓëżÊýÏîºÍÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy2=4x£¬µãP£¨a£¬0£©ÊÇxÖáÉϵÄÒ»µã£¬¾­¹ýµãPÇÒбÂÊΪ1µÄÖ±ÏßlÓëÅ×ÎïÏßÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóÖ¤Ïß¶ÎABµÄÖеãÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£¬²¢Çó³ö¸ÃÖ±Ïß·½³Ì£»
£¨2£©Èô|AB|=4|OP|£¨OÎª×ø±êÔ­µã£©£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸