(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
解:(Ⅰ)证明:∵PA⊥平面ABCD ∴PA⊥BD
∵ABCD为正方形 ∴AC⊥BD
∴BD⊥平面PAC又BD在平面BPD内,
∴平面PAC⊥平面BPD .。。。。。。。。。。。。。。。。 6分
(Ⅱ)解法一:在平面BCP内作BN⊥PC垂足为N,连DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND为二面角B—PC—D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND =。。。。。。。。。。。。。。。 12分
解法二:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立空间坐标系如图,
在平面BCP内作BN⊥PC垂足为N连DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND为二面角B—PC—D的平面角
设
10分
12分
解法三:以A为原点,AB、AD、AP所在直线分别为x轴、y轴、z轴建立如图空间坐标系,作AM⊥PB于M、AN⊥PD于N,易证AM⊥平面PBC,AN⊥平面PDC,
设
∵二面角B—PC—D的平面角与∠MAN互补
∴二面角B—PC—D的余弦值为 …………………………. 12分
【解析】略
科目:高中数学 来源: 题型:
(本题满分12分)
在△ABC中,角A、B、C的对边分别为a、b、c,且.
??????(Ⅰ)求角A的大小;??????(Ⅱ)若,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分12分)
在平面直角坐标系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若实数λ使向量,λ,满足λ2·()2=·。
(1)求点P的轨迹方程,并判断P点的轨迹是怎样的曲线;
(2)当λ=时,过点A1且斜率为1的直线与此时(1)中的曲线相交的另一点为B,能否在直线x=-9上找一点C,使ΔA1BC为正三角形(请说明理由)。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(二)文数学卷(解析版) 题型:解答题
(本题满分12分)在中分别为A,B,C所对的边,且
(1)判断的形状;
(2)若,求的取值范围
查看答案和解析>>
科目:高中数学 来源:2013届云南大理州宾川四中高二下学期4月考试文科数学试卷(解析版) 题型:解答题
(本题满分12分)在各项为正的数列中,数列的前n项和满足
(1)求;(2) 由(1)猜想数列的通项公式;(3) 求
查看答案和解析>>
科目:高中数学 来源:2013届云南省高二上学期期末考试理科数学 题型:解答题
(本题满分12分)在边长为2的正方体中,E是BC的中点,F是的中点
(Ⅰ)求证:CF∥平面
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com