分析 先利用和差化积公式化简已知,将两式相除后,利用同角三角函数基本关系式可求tan$\frac{α+β}{2}$,cos2$\frac{α+β}{2}$的值,利用二倍角的余弦函数公式即可化简求值.
解答 解:∵sinα+sinβ=2sin$\frac{α+β}{2}$cos$\frac{α-β}{2}$=$\frac{1}{4}$,①
cosα+cosβ=2cos$\frac{α+β}{2}$cos$\frac{α-β}{2}$=$\frac{1}{3}$,②
∴①÷②可得:tan$\frac{α+β}{2}$=$\frac{3}{4}$,
∴cos2$\frac{α+β}{2}$=$\frac{1}{1+ta{n}^{2}\frac{α+β}{2}}$=$\frac{16}{25}$,
∴cos(α+β)=2cos2$\frac{α+β}{2}$-1=$\frac{7}{25}$.
故答案为:$\frac{7}{25}$.
点评 本题主要考查了和差化积公式,同角三角函数基本关系式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 17 | C. | 33 | D. | 65 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=2n-1 | B. | an=2n+1 | C. | ${a_n}={n^2}-1$ | D. | an=n2+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com