精英家教网 > 高中数学 > 题目详情
9.已知$\{{a_n}\}(n∈{N^*})满足:{a_n}=\left\{\begin{array}{l}n(n=1,2,3,4,5,6)\\-{a_{n-3}}(n≥7且n∈{N^*})\end{array}\right.,则{a_{2015}}$=5,S2015=15.

分析 根据题意推知数列{an}(n≥7)是周期为3的周期数列,由此进行解答.

解答 解:∵$\{{a_n}\}(n∈{N^*})满足:{a_n}=\left\{\begin{array}{l}n(n=1,2,3,4,5,6)\\-{a_{n-3}}(n≥7且n∈{N^*})\end{array}\right.,{\;}$
a1=1,a2=2,a3=3,a4=4,a5=5,a6=6,
a7=-a4=-4,a8=-a5=-5,a9=-a6=-6,
a10=-a4=-4,a11=-a8=a5=5,a12=-a9=a6=6,
a13=-a4=-4,a14=-a8=a5=5,a15=-a9=a6=6,
∴数列{an}(n≥7)是周期为3的周期数列,
∵2015=671×3+2,
∴a2015=a5=5.
∴S2015=a1+a2+a3+a2010+a2011+a2013+a2014+a2015
=a1+a2+a3-a4+a5+a6-a4+a5
=1+2+3-4+5+6-4+5,
=15.
故a2015=5.S2015=15.
故答案为5;15.

点评 本题考查了数列递推式、数列的周期性,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在矩形ABCD中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,点E,F分别是边BC,CD的中点,则($\overrightarrow{AE}$+$\overrightarrow{AF}$)•$\overrightarrow{AC}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知幂函数$f(x)={({m-1})^2}{x^{{m^2}-4m+3}}$在(0,+∞)上单调递增.
(1)求实数m的值;
(2)若函数$h(x)=-\root{3}{{{{[{f(x)}]}^2}}}+2bx+1-b$在[0,2]上的最大值为3,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将4个不同的球随机地放入3个盒子中,则每个盒子中至少有一个球的概率等于$\frac{4}{9}$.(用分数作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}通项公式an=2n,其前n项和Sn,数列{bn}是以$\frac{1}{2}$为首项的等比数列,且${b_1}{b_2}{b_3}=\frac{1}{64}$.
(1)求数列{bn}的通项公式;
(2)记Cn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$,求Cn
(3)设数列{bn}的前n项和为Tn,若对任意n∈N*不等式Cn≥$\frac{1}{4}t-\frac{1}{2}{T_n}$恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos(3x+$\frac{π}{3}$),其中x∈[$\frac{π}{6}$,m],若f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{6}{x}-{log_2}x$,在下列区间中,包含f(x)的零点的区间是(  )
A.( 0,1)B.( 1,2)C.( 2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P(2,0),Q(0,-2),动点M在直线l:x-y-1=0上,求:
(1)PM+QM的最小值;
(2)PM2+QM2的最小值.

查看答案和解析>>

同步练习册答案