精英家教网 > 高中数学 > 题目详情
5.小明射击一次击中10环的概率为0.8,则小明连续射击3次至少击中一次10环的概率为0.992.

分析 由条件利用n次独立重复实验中恰好发生k次的概率计算公式,求得结果.

解答 解:三次都没有击中的概率为:(1-0.8)3=0.008,
小明连续射击3次至少击中一次10环的概率P=1-0.008=0.992.
故答案为:0.992.

点评 本题主要考查n次独立重复实验中恰好发生k次的概率计算公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(x∈[0,$\frac{π}{2}$]),若ω=1,则函数f(x)的值域为[$\frac{1}{2}$,1];若f(x)在[0,$\frac{π}{2}$]为增函数,则ω的取值范围是[0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z是复数,z+2i,$\frac{z}{2-i}$均为实数(i为虚数单位),且复数(z-ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,则复数$\frac{i}{2-i}$等于(  )
A.-$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{1}{5}$-$\frac{2}{5}$iC.-$\frac{2}{5}$+$\frac{1}{5}$iD.$\frac{2}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{7π}{12}$
Asin(ωx+φ)30
(1)请将上表空格中的数据在答卷的相应位置上,并求函数f(x)的解析式;
(2)若y=f(x)的图象上所有点向左平移$\frac{π}{6}$个单位后对应的函数为g(x),求当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,函数y=g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=-2,求$\frac{si{n}^{4}α+si{n}^{2}α•co{s}^{2}α}{2co{s}^{2}α-3si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设i为虚数单位,若$\frac{a+2i}{b-i}$=i2015(a,b∈R),则复数a+b=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知角α终边不在坐标轴上,试分析$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设向量$\overrightarrow{m}$和$\overrightarrow{n}$的夹角为θ,且$\overrightarrow{m}$=(2,2),2$\overrightarrow{n}$-$\overrightarrow{m}$=(-4,4),则cosθ的值为(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.0

查看答案和解析>>

同步练习册答案