精英家教网 > 高中数学 > 题目详情
3.已知点A(0,0),B(2,0),C(2,1),D(1,1),若平面区域Ω由满足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$($\frac{1}{2}$≤λ≤1,
0≤μ≤1)的点P组成,现从梯形平面区域ABCD内任取一点M,则点M落在区域Ω内的概率为$\frac{1}{3}$.

分析 设P的坐标为(x,y),根据$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$,结合向量的坐标运算解出$\left\{\begin{array}{l}{λ=\frac{x-y}{2}}\\{μ=y}\end{array}\right.$,再由$\frac{1}{2}$≤λ≤1,0≤μ≤1得到关于x、y的不等式组,求出相应的面积,即可求出点M落在区域Ω内的概率.

解答 解:设P的坐标为(x,y),则
$\overrightarrow{AB}$=(2,0),$\overrightarrow{AD}$=(1,1),$\overrightarrow{AP}$=(x,y)
∵$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$,
∴$\left\{\begin{array}{l}{x=2λ+μ}\\{y=μ}\end{array}\right.$,解之得$\left\{\begin{array}{l}{λ=\frac{x-y}{2}}\\{μ=y}\end{array}\right.$
∵$\frac{1}{2}$≤λ≤1,0≤μ≤1,
∴点P坐标满足不等式组$\left\{\begin{array}{l}{1≤x-y≤2}\\{0≤y≤1}\end{array}\right.$
作出不等式组对应的平面区域,如图阴影所示,面积为$\frac{1}{2}×1×1$=0.5.
梯形平面区域ABCD的面积为$\frac{1+2}{2}×1$=1.5
∴点M落在区域Ω内的概率为$\frac{0.5}{1.5}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题在平面坐标系内给出向量等式,求点M落在区域Ω内的概率.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正项数列{an}的前n项和为Sn,奇数项成公差为1的等差数,当n为偶数时点(an,an+2)在直线y=3x+2上,又知a1=1,a2=2,则数列{an}的前2n项和S2n等于(  )
A.n2-n-6+3n+1B.$\frac{{3}^{n+1}-3}{2}$
C.$\frac{4{n}^{2}-2n-23+{3}^{2n+1}}{2}$D.$\frac{{n}^{2}-n-3+{3}^{n+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.三条不重合的直线a,b,c及三个不重合的平面α,β,γ,下列命题正确的是(  )
A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m?α,n?β,m∥n,则α∥β
C.若m∥α,n∥β,m⊥n,则α⊥βD.若n⊥α,n⊥β,m⊥β,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,n∈N+,若an+1=2an+n+1,n∈N+,求数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等比数列{an}中,若a3=2,a7=8,则a5=(  )
A.4B.-4C.±4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若p,q都为命题,则“p或q为真命题”是“?p且q为真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.宿州市在举办奇石文化艺术节期间,为了提升与会者的赏石品味,组委会把聘请的6位专家随机的安排在“奇石公园”与“奇石展览中心”两个不同地点作指导,每一地点至少安排一人.
(Ⅰ)求6位专家中恰有2位被安排在“奇石公园”的概率;
(Ⅱ)设x,y分别表示6位专家被安排在“奇石公园”和“奇石展览中心”的人数,记X=|x-y|,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示的焦点在x轴上的双曲线,则m的取值范围为m>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若向量$\overrightarrow{BA}$,$\overrightarrow{BC}$的夹角为60°,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,且AD=2.∠ADC=120°,则$|{\overrightarrow{BA}+\overrightarrow{BC}}|$=(  )
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.6

查看答案和解析>>

同步练习册答案