15£®ËÞÖÝÊÐÔÚ¾Ù°ìÆæÊ¯ÎÄ»¯ÒÕÊõ½ÚÆÚ¼ä£¬ÎªÁËÌáÉýÓë»áÕßµÄÉÍʯƷ棬×éί»á°ÑƸÇëµÄ6λר¼ÒËæ»úµÄ°²ÅÅÔÚ¡°ÆæÊ¯¹«Ô°¡±Óë¡°ÆæÊ¯Õ¹ÀÀÖÐÐÄ¡±Á½¸ö²»Í¬µØµã×÷Ö¸µ¼£¬Ã¿Ò»µØµãÖÁÉÙ°²ÅÅÒ»ÈË£®
£¨¢ñ£©Çó6λר¼ÒÖÐÇ¡ÓÐ2λ±»°²ÅÅÔÚ¡°ÆæÊ¯¹«Ô°¡±µÄ¸ÅÂÊ£»
£¨¢ò£©Éèx£¬y·Ö±ð±íʾ6λר¼Ò±»°²ÅÅÔÚ¡°ÆæÊ¯¹«Ô°¡±ºÍ¡°ÆæÊ¯Õ¹ÀÀÖÐÐÄ¡±µÄÈËÊý£¬¼ÇX=|x-y|£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®

·ÖÎö £¨¢ñ£©Éè6λר¼ÒÖÐÇ¡ÓÐiÃû±»°²ÅÅÔÚ¡°ÆæÊ¯¹«Ô°¡±µÄʼþΪAi£¬£¨i=1£¬2£¬3£¬4£¬5£©£¬ÀûÓùŵä¸ÅÐ͵ĸÅÂÊÇó½â¼´¿É£®
£¨¢ò£©XµÄËùÓпÉÄÜȡֵÊÇ0£¬2£¬4£®Çó³ö¸ÅÂÊ£¬µÃµ½·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû¼´¿É£®

½â´ð ½â£º£¨¢ñ£©Éè6λר¼ÒÖÐÇ¡ÓÐiÃû±»°²ÅÅÔÚ¡°ÆæÊ¯¹«Ô°¡±µÄʼþΪAi£¬£¨i=1£¬2£¬3£¬4£¬5£©£¬Ôò$P£¨{A_2}£©=\frac{C_6^2C_4^4}{{{2^6}-2}}=\frac{15}{62}$£®¡­£¨4·Ö£©
£¨¢ò£©XµÄËùÓпÉÄÜȡֵÊÇ0£¬2£¬4£®
$P£¨X=0£©=P£¨{A_3}£©=\frac{C_6^3C_3^3}{{{2^6}-2}}=\frac{10}{31}$£¬
$P£¨X=2£©=P£¨{A_2}£©+P£¨{A_4}£©=\frac{C_6^2C_4^4}{{{2^6}-2}}+\frac{C_6^4C_2^2}{{{2^6}-2}}=\frac{15}{31}$£»
$P£¨X=4£©=P£¨{A_1}£©+P£¨{A_5}£©=\frac{C_6^1C_5^5}{{{2^6}-2}}+\frac{C_6^5}{{{2^6}-2}}=\frac{6}{31}$£®¡­£¨8·Ö£©
ÔòËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ

X024
P$\frac{10}{31}$$\frac{15}{31}$$\frac{6}{31}$
ÔòXµÄÊýѧÆÚÍû$E£¨X£©=0¡Á\frac{10}{31}+2¡Á\frac{15}{31}+4¡Á\frac{6}{31}=\frac{54}{31}$¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÒÔ¼°ÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁк¯ÊýÖУ¬ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏΪÔöº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=x-1B£®y=£¨$\frac{1}{2}$£©xC£®y=x+$\frac{1}{x}$D£®y=ln£¨x+1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖªµÈÑüÖ±½ÇÈý½ÇÐÎABCÖУ¬¡ÏB=90¡ã£¬S¡÷ABC=12cm2£¬ÇóÒõÓ°²¿·ÖµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªµãA£¨0£¬0£©£¬B£¨2£¬0£©£¬C£¨2£¬1£©£¬D£¨1£¬1£©£¬ÈôÆ½ÃæÇøÓò¦¸ÓÉÂú×ã$\overrightarrow{AP}=¦Ë\overrightarrow{AB}+¦Ì\overrightarrow{AD}$£¨$\frac{1}{2}$¡Ü¦Ë¡Ü1£¬
0¡Ü¦Ì¡Ü1£©µÄµãP×é³É£¬ÏÖ´ÓÌÝÐÎÆ½ÃæÇøÓòABCDÄÚÈÎȡһµãM£¬ÔòµãMÂäÔÚÇøÓò¦¸ÄڵĸÅÂÊΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÈýµãA£¨-1£¬-1£©£¬B£¨3£¬1£©£¬C£¨1£¬4£©£¬ÔòÏòÁ¿$\overrightarrow{BC}$ÔÚÏòÁ¿$\overrightarrow{BA}$·½ÏòÉϵÄͶӰΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$-\frac{{\sqrt{5}}}{5}$C£®$\frac{{2\sqrt{13}}}{13}$D£®$-\frac{{2\sqrt{13}}}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©Âú×㣺¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨2x£©=2f£¨x£©£»µ±x¡Ê£¨1£¬2]ʱ£¬f£¨x£©=2-x£¬¸ø³öÈçϽáÂÛ£º
¢Ù¶Ô?m¡ÊZ£¬ÓÐf£¨2m£©=0£»
¢Úº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬+¡Þ£©£»      
¢Û´æÔÚn¡ÊZ£¬Ê¹µÃf£¨2n+1£©=9£»
¢Üº¯Êýf£¨x£©ÔÚÇø¼ä£¨a£¬b£©µ¥µ÷µÝ¼õµÄ³ä·ÖÌõ¼þÊÇ¡°´æÔÚk¡ÊZ£¬Ê¹µÃ£¨a£¬b£©⊆£¨2k£¬2k+1£©£¬ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÜB£®¢Ù¢ÚC£®¢Ù¢Û¢ÜD£®¢Ù¢Ú¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô$2{S_n}={a_n}+{a_n}^2$£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{1}{a_n^2}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóÖ¤£ºTn£¾$\frac{n}{n+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÉèÐéÊýµ¥Î»Îªi£¬¸´Êý$\frac{2-i}{i}$Ϊ£¨¡¡¡¡£©
A£®-1-2iB£®-1+2iC£®1+2iD£®1-2i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÊýÁÐ{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬ÇÒa2=2£¬a1£¬a3£¬a6³ÉµÈ±ÈÊýÁÐ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çbn=4anan+1£¬$\frac{1}{{c}_{n}}$=$\frac{1}{{b}_{n}}$+$\frac{1}{{b}_{n+1}}$£¬ÊýÁÐ{$\frac{1}{{c}_{n}}$}µÄǰnÏîºÍΪSn£¬Ö¤Ã÷£¬¶ÔÒ»ÇÐÕýÕûÊýn£¬ÓÐSn£¼$\frac{3}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸