分析 (1)通过题意易得$2{S_n}={a_n}+{a_n}^2$,递推其关系可得数列{an}是公差为1的等差数列,计算即可;
(2)通过(1)可得${b_n}=\frac{1}{n^2}$,利用放缩法、裂项相消法即可得出结论.
解答 解:(1)由已知:对于n∈N*,总有$2{S_n}={a_n}+{a_n}^2$ (①) 成立,
∴$2{S_{n-1}}={a_{n-1}}+{a_{n-{1^{\;}}}}^2$(n≥2)(②)
①-②得$2{a_n}={a_n}+{a_n}^2-{a_{n-1}}-{a_{n-1}}^2$,
∴an+an-1=(an+an-1)(an-an-1),
∵an,an-1均为正数,∴an-an-1=1(n≥2),
∴数列{an}是公差为1的等差数列.
又n=1时,$2{S_1}={a_1}+{a_1}^2$,解得a1=1,
∴an=n.(n∈N*);
(2)由(1)可知 ${b_n}=\frac{1}{n^2}$,
∵$\frac{1}{n^2}>\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}>(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})=\frac{n}{n+1}$.
点评 本题考查数列的递推关系,通项公式,考查放缩法、裂项相消法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | $\frac{π}{12}$ | $\frac{7π}{12}$ | ① | ||
| tx+ϕ | 0 | $\frac{π}{2}$ | $\frac{3π}{2}$ | 2π | |
| f(x) | 0 | 1 | 0 | -1 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | [-2,1] | C. | [-2,0] | D. | [-1,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com