精英家教网 > 高中数学 > 题目详情
19.已知等差数列{an}的前n项和为Sn,a3=5,S8=64
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{{S_{n-1}}}}+\frac{1}{{{S_{n+1}}}}>\frac{2}{S_n}(n≥2,n∈{N^*})$.

分析 (1)设等差数列{an}的首项为a1,公差为d,通过a3=5,S8=64可得首项和公差,计算即可;
(2)通过(1)可知Sn=n2,利用不等式的性质化简可得原命题成立只需3n2>1在n≥1时恒成立.

解答 (1)解:设等差数列{an}的首项为a1,公差为d,
根据题意,可得$\left\{\begin{array}{l}{{a}_{3}={a}_{1}+2d=5}\\{{S}_{8}=8{a}_{1}+28d=64}\end{array}\right.$,
解得a1=1,d=2,
∴数列{an}的通项公式为:an=2n-1;
(2)证明:由(1)可知:Sn=n2
要证$\frac{1}{{{S_{n-1}}}}+\frac{1}{{{S_{n+1}}}}>\frac{2}{S_n}(n≥2,n∈{N^*})$恒成立,
只需证:$\frac{1}{(n-1)^{2}}+\frac{1}{(n+1)^{2}}>\frac{2}{{n}^{2}}$,
只需证:[(n+1)2+(n-1)2]n2>2(n2-1)2
只需证:(n2+1)n2>(n2-1)2
只需证:3n2>1,
而3n2>1在n≥1时恒成立,且以上每步均可逆,
从而$\frac{1}{{{S_{n-1}}}}+\frac{1}{{{S_{n+1}}}}>\frac{2}{S_n}(n≥2,n∈{N^*})$恒成立.

点评 本题考查等差数列的简单性质,利用不等式的性质进行化简是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.对于函数y=f(x),部分x与y的对应关系如下表:
x123456789
y375961824
数列{xn}满足:x1=1,且对于任意n∈N*,点{xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+…+x2015=(  )
A.7554B.7549C.7546D.7539

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知三点A(-1,-1),B(3,1),C(1,4),则向量$\overrightarrow{BC}$在向量$\overrightarrow{BA}$方向上的投影为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{13}}}{13}$D.$-\frac{{2\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和为Sn,若$2{S_n}={a_n}+{a_n}^2$,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{a_n^2}$,数列{bn}的前n项和为Tn,求证:Tn>$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线过点(0,1)和(0,-1),其准线为圆x2+y2=4的切线,则该抛物线焦点的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{4}=1$(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设虚数单位为i,复数$\frac{2-i}{i}$为(  )
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合$A=\{x|\frac{x}{x-1}≥0,x∈R\}$,B={y|y=2x+1,x∈R},则∁R(A∩B)=(  )
A.(-∞,1]B.(-∞,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(ωx+φ)$({ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,则y=f(x)的图象可由y=sin2x的图象(  )
A.向右平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{3}$个单位
C.向右平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项均为整数的等比数列{an},a1=1,a2a4=16,单调增数列{bn}的前n项和为Sn,a4=b3,且6Sn=bn2+3bn+2(n∈N*).
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)令cn=$\frac{{b}_{n}}{{a}_{n}}$(n∈N*),
(1)求数列{cn}的前n项和Tn
(2)求使得cn>1的所有n的值,并说明理由.

查看答案和解析>>

同步练习册答案