分析 由已知可得a2-b2=$\frac{1}{4}$c2,结合余弦定理cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,化简所求即可得解.
解答 解:在△ABC中,∵a2=b2+$\frac{1}{4}$c2,可得:a2-b2=$\frac{1}{4}$c2,
又∵由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
∴$\frac{acosB}{c}$=$\frac{a}{c}$×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{\frac{1}{4}{c}^{2}+{c}^{2}}{2{c}^{2}}$=$\frac{5}{8}$.
故答案为:$\frac{5}{8}$.
点评 本题主要考查了余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22 | B. | 23 | C. | 24 | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 从匀速传递的产品生产流水线上,质检员每5分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样 | |
| B. | 已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有${x^{\frac{1}{2}}}<{x^{\frac{1}{3}}}$,则 p∨(¬q)是真命题 | |
| C. | “sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件 | |
| D. | 命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com