精英家教网 > 高中数学 > 题目详情
7.已知f(x)=logax与y=x相切,则a的值为${e}^{\frac{1}{e}}$.

分析 设切点为(m,n),则n=m,n=logam,求出函数的导数,求得切线的斜率,结合已知切线方程,可得m的方程,运用对数的运算性质,即可解得a.

解答 解:设切点为(m,n),
则n=m,n=logam,
又f(x)=logax的导数为f′(x)=$\frac{1}{xlna}$,
即有切线的斜率为$\frac{1}{mlna}$=1,
即有m=logam=logae,
解得m=e,a=${e}^{\frac{1}{e}}$,
故答案为:${e}^{\frac{1}{e}}$.

点评 本题考查导数的运用:求切线的斜率,主要考查导数的几何意义和对数的运算性质,正确求导和消元求解是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知在等差数列{an}中,a2+a6+a10=1,则a3+a9=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=$\frac{{e}^{x}}{x}$,f(x)=axlnx+b,曲线y=f(x)在点(1,f(1))处的切线为y=x+$\frac{2}{e}$-1.
(1)求a,b;
(2)当h(x)=f(x)•g(x)时,证明:h(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=x3-2x+1在点(1,0)处的切线方程为(  )
A.y=2x-2B.y=-2x+2C.y=x-1D.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线$y=cos(x+\frac{π}{6})$在x=$\frac{π}{6}$处切线的斜率为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=(  )
A.2B.12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线f(x)=ex在点A(x0,f(x0))处的切线与直线x-y+3=0平行,则点A的坐标为(  )
A.(-1,e-1B.(0,1)C.(1,e)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2(x-a)+bx
(Ⅰ)若a=3,b=l,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若b=0,不等式$\frac{f(x)}{x^2}$-1nx+1≥0对任意的x∈[${\frac{1}{2}$,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{({x}^{2}-2ax){e}^{x},}&{x>0}\\{bx,}&{x≤0}\end{array}\right.$,g(x)=clnx+b,且x=$\sqrt{2}$是函数y=f(x)的极值点,直线l是函数y=f(x)的图象在点(2,f(2))处的切线.
(1)求实数a的值和直线l的方程.
(2)若直线l与函数y=g(x)的图象相切于点P(x0,y0),x0∈[e-1,e],求实数b的取值范围.

查看答案和解析>>

同步练习册答案