精英家教网 > 高中数学 > 题目详情
5.已知集合A={y|y=x+$\sqrt{x}$},B={-3,-1,2,4},则A∩B中元素的个数为(  )
A.1B.2C.3D.4

分析 化简集合A,再根据交集的定义求出A∩B.

解答 解:∵集合A={y|y=x+$\sqrt{x}$}={y|y≥0},
B={-3,-1,2,4},
∴A∩B={2,4};
则A∩B中元素的个数为2.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=ax-$\frac{b}{x}$,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,则实数a,b的值为(  )
A.a=1,b=3B.a=3,b=1C.a=$\frac{23}{56}$,b=$\frac{9}{14}$D.a=$\frac{11}{8}$,b=$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC三个内角A,B,C的对边,b=acosC+$\frac{\sqrt{3}}{3}$asinC.
(1)求A;
(2)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用反证法证明命题“若a,b∈R,且a2+b2=0,则a=b=0”时,则假设内容是a≠0或b≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,BC=7,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$,若动点P满足$\overrightarrow{AP}$=$\frac{2λ}{3}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.甲、乙、丙三种溶液分别重147g、343g、133g,现要将它们分别全部装入小瓶中,若小瓶装入液体的质量相同,则每瓶最多装7g.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个长椅上共有10个座位,现有4人去坐,其中恰有5个连续空位的坐法共有(  )
A.240种B.600种C.408种D.480种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的偶函数y=f(x)满足f(x+4)=f(x),当x∈[4,5]时,f(x)=x+1,则f(103)=(  )
A.2B.3C.4D.6

查看答案和解析>>

同步练习册答案