| A. | 3$\sqrt{6}$ | B. | 4$\sqrt{6}$ | C. | 6$\sqrt{6}$ | D. | 12$\sqrt{6}$ |
分析 根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.
解答 解:设$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$.
∵$\overrightarrow{AP}$=$\frac{2}{3}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$=$\overrightarrow{AD}$+(1-λ)$\overrightarrow{AC}$.
∴C,D,P三点共线.
∴P点轨迹为直线CD.
在△ABC中,sinA=$\frac{2\sqrt{6}}{5}$.sinC=$\frac{2\sqrt{6}}{7}$.
由正弦定理得AB=5.
sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{2\sqrt{6}}{5}×\frac{5}{7}+\frac{1}{5}×\frac{2\sqrt{6}}{7}$=$\frac{12\sqrt{6}}{35}$
∴S△ABC=$\frac{1}{2}×5×7×\frac{12\sqrt{6}}{35}$=6$\sqrt{6}$.
∴S△ACD=$\frac{2}{3}$S△ABC=4$\sqrt{6}$.
故选:B.
点评 本题考查了平面向量线性运算的几何意义,正弦定理解三角形,属于中档题.
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 4 | 5 |
| y | 1 | 3 | 5 | 7 |
| A. | -0.1 | B. | -0.2 | C. | 0.1 | D. | 0.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向上平移1个单位 | B. | 向下平移1个单位 | C. | 向左平移1个单位 | D. | 向右平移1个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在满足条件的a,r,使得VC<VS | |
| B. | 对任意满足条件的a,r,使得VC=VS | |
| C. | 对任意满足条件的a,r,使得VC>VS | |
| D. | 存在唯一一组条件的a,r,使得VC=VS |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com