精英家教网 > 高中数学 > 题目详情
6.在棱长为1的正方体ABCD-A1B1C1D1中,给出以下命题:
①直线A1B与B1C所成的角为60°;
②动点M在表面上从点A到点C1经过的最短路程为1+$\sqrt{2}$;
③若N是线段AC1上的动点,则直线CN与平面BDC1所成角的正弦值的取值范围是[$\frac{\sqrt{3}}{3}$,1];
④若P、Q是线段AC上的动点,且PQ=1,则四面体PQB1D1的体积恒为$\frac{\sqrt{2}}{6}$.
则上述命题中正确的有①③④.(填写所有正确命题的序号)

分析 ①先证明A1B与A1D所成角为60°,又B1C∥A1D,可得直线A1B与B1C所成的角为60°,判断①正确;
②将面AB1与面A1C1展开,那么动点M在表面上从点A到点C1经过的最短路程为$\sqrt{5}$判断②错误;
③由平面BDC1⊥平面ACC1,结合线面角的定义分别求出直线CN与平面BDC1所成角的正弦值最大值与最小值判断③正确;
④在PQ变化过程中,四面体PQB1D1的顶点D1到底面B1PQ的距离不变,底面积不变,则体积不变,求出体积判断④正确.

解答 解:①在△A1BD中,每条边都是$\sqrt{2}$,即为等边三角形,∴A1B与A1D所成角为60°,
又B1C∥A1D,∴直线A1B与B1C所成的角为60°,正确;
②将面AB1与面A1C1展开,那么动点M在表面上从点A到点C1经过的最短路程为AC1,AC1=$\sqrt{5}$,错误;
③如图,由正方体可得平面BDC1⊥平面ACC1,当N点位于AC1上,且使CN⊥平面BDC1时,直线CN与平面BDC1所成角的正弦值最大为1,
当N与C1重合时,连接CN交平面BDC1所得斜线最长,直线CN与平面BDC1所成角的正弦值最小等于$\frac{\sqrt{3}}{3}$,
∴直线CN与平面BDC1所成角的正弦值的取值范围是[$\frac{\sqrt{3}}{3}$,1],正确;

④连接B1P,B1Q,设D1到平面B1AC的距离为h,则h=$\frac{2\sqrt{3}}{3}$,B1到直线AC的距离为$\frac{\sqrt{6}}{2}$,
则四面体PQB1D1的体积V=$\frac{1}{3}×\frac{1}{2}×1×\frac{\sqrt{6}}{2}×\frac{2}{3}\sqrt{3}=\frac{\sqrt{2}}{6}$,正确.
∴正确的命题是①③④.
故答案为:①③④

点评 本题考查了命题的真假判断与应用,考查了空间点线面的位置关系,考查了空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知抛物线y2=4x上有一条长为6的动弦AB,则AB的中点到y轴的最短距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,M是椭圆上任一点,△MF1F2面积的最大值为1,椭圆的内接矩形(矩形的边与椭圆的对称轴平行)面积的最大值为2$\sqrt{2}$,则椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若${C}_{21}^{k-4}$<${C}_{21}^{k-2}$<${C}_{21}^{k-1}$(k∈N),则k的取值范围是{k|4≤k≤11,k∈N}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点,
(1)求直线BC与平面EAC所成角的正弦值;
(2)求B点到平面EAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4,⊙C2与⊙C1关于直线1:4x+8y-31=0对称.
(1)求⊙C2的方程;
(2)设P为平面上的点,满足下列条件:过点P存在无穷多对互相垂直的直线l1和l2,它们分别与⊙C1和⊙C2相交,且直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(-2,0),B(0,2),P是圆C:x2+y2+kx-2y=0上的动点,点M.N在圆上,且与直线x-y-1=0对称
(1)求圆心C的坐标及半径;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=alnx+x2f′(1)+${∫}_{1}^{e}$$\frac{1}{x}$dx,且f′(2)=7,
(1)求曲线f(x)在x=1处的切线方程;
(2)若函数f(x)>m对于x>$\frac{1}{e}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某人在5场投篮比赛中得分的茎叶图如图所示,若5场比赛的平均得分为11分,则则5场比赛得分的方差为$\frac{34}{5}$.

查看答案和解析>>

同步练习册答案