精英家教网 > 高中数学 > 题目详情
20.甲、乙等4名实习生到某医院的内科、外科、口腔科3个科室进行实习,每个科室至少分配1名,且甲不能去口腔科,则不同的分配方案种数为(  )
A.54B.36C.24D.18

分析 根据题意中甲要求不到A学校,分析可得对甲有2种不同的分配方法,进而对剩余的三人分情况讨论,①其中有一个人与甲在同一个科室,②没有人与甲在同一个科室,易得其情况数目,最后由分步计数原理计算可得答案.

解答 解:根据题意,首先分配甲,有2种方法,
再分配其余的三人:分两种情况,①其中有一个人与甲在同一个科室,有A33=6种情况,
②没有人与甲在同一个科室,则有C32•A22=6种情况;
则若甲要求不到口腔科,则不同的分配方案有2×(6+6)=24种;
故选:C.

点评 本题考查排列、组合的综合运用,注意题意中“每个科室至少分配1名”这一条件,再分配甲之后,需要对其余的三人分情况讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.现有9本不同的书,分别求下列情况的不同分法的种数.
(1)分成三组,一组4本,一组3本,一组2本;
(2)分给三人,一人4本,一人3本,一人2本;
(3)平均分成三组.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知各项均为正数的数列{an}满足log2an-log2an-1=1n∈N*,n≥2,且a4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
(Ⅲ)令cn=$\frac{2n+4}{{n(n+1){a_n}}}$,记数列{cn}的前n项和为Sn,其中n∈N*,证明:$\frac{3}{2}$≤Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式$\frac{{{x^2}+2x-3}}{{-{x^2}+x+6}}$≥0的解集为[-3,-2)∪[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若z=$\frac{2i}{-1+i}$,则复数z的虚部为(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线$\frac{{x}^{2}}{4}$-y2=1 通过$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$伸缩变换后得到的曲线方程为x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知渐近线方程为y=±$\frac{2}{3}$x且经过P(${\sqrt{6}$,2),求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l:y=$\frac{1}{2}$x和两定点A(1,1)、B(2,2),在直线l上取一点P,使PA2+PB2最小,试求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某医学院将6名大学生分配到某医院的3个科室实习,每个科室至少1人,则不同的分配方案的种数是(  )
A.360B.90C.540D.2160

查看答案和解析>>

同步练习册答案