| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由条件可以得到$|\overrightarrow{{e}_{1}}|=1,|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$,然后进行数量积的运算便可求出$\overrightarrow{a}•\overrightarrow{b}=-\frac{7}{2}$,${\overrightarrow{a}}^{2}=7,{\overrightarrow{b}}^{2}=7$,从而根据向量夹角余弦的计算公式即可求出$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{1}{2}$,这样便可得出向量$\overrightarrow{a},\overrightarrow{b}$的夹角.
解答 解:根据条件,$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$;
$\overrightarrow{a}•\overrightarrow{b}=(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•(-3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})$=$-6{\overrightarrow{{e}_{1}}}^{2}+\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+2{\overrightarrow{{e}_{2}}}^{2}$=$-6+\frac{1}{2}+2=-\frac{7}{2}$,${\overrightarrow{a}}^{2}=4{\overrightarrow{{e}_{1}}}^{2}+4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{\overrightarrow{{e}_{2}}}^{2}=7$,${\overrightarrow{b}}^{2}=9{\overrightarrow{{e}_{1}}}^{2}-12\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+4{\overrightarrow{{e}_{2}}}^{2}=7$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-\frac{7}{2}}{\sqrt{7}•\sqrt{7}}=-\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{2π}{3}$.
故选:C.
点评 考查单位向量的概念,向量数量积的运算及其计算公式,向量夹角余弦的计算公式,以及已知三角函数求角,清楚向量夹角的范围.
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2) | B. | {-1,0,1,2,3} | C. | {0,1} | D. | {2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com