精英家教网 > 高中数学 > 题目详情
2.求和:
(1)$\sum_{k=1}^{10}$(3+2k);
(2)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+(6+$\frac{1}{27}$)+…+(2n+$\frac{1}{{3}^{n}}$);
(3)(a-1)+(a2-1)+(a3-1)+…+(an-1)

分析 分别根据等比数列和等差数列的前n项和公式计算即可.

解答 解:(1)$\sum_{k=1}^{10}$(3+2k)=3+21+3+22+…+3+210=3×10+$\frac{2(1-{2}^{10})}{1-2}$=30+(211-2)=2076,
(2)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+(6+$\frac{1}{27}$)+…+(2n+$\frac{1}{{3}^{n}}$)=(2+4+6+…+2n)+($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)=$\frac{n(2+2n)}{2}$+$\frac{\frac{1}{3}(1-{3}^{-n})}{1-\frac{1}{3}}$n2+n+$\frac{1}{2}$-$\frac{1}{2•{3}^{n}}$,
(3(a-1)+(a2-1)+(a3-1)+…+(an-1)=(a+a2+a3+…+an)-n,
当a=1时,(a-1)+(a2-1)+(a3-1)+…+(an-1)=0,
当a≠1时,(a-1)+(a2-2)+(a3-3)+…+(an-n)=$\frac{a(1-{a}^{n})}{1-a}$-n

点评 本题考查了等差数列和等比数列当前n项和公式,培养了学生的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的两个单位向量,则$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在A,B,C,D,E五个区域中栽种3种植物,要求同一区域中只种1种植物,相邻两区域所种植物不同,则不同的栽种方法的总数为(  )
A.21B.24C.30D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线$y=\frac{1}{3}{x^3}+\frac{4}{3}$.
(1)求曲线过点P(2,4)的切线方程;
(2)求满足斜率为1的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.cos(-1920°)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2sin2(ωx+$\frac{π}{6}$)(ω>0)在区间[$\frac{π}{6}$,$\frac{2π}{3}$]内单调递增,则ω的最大值是(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.画出不等式x2-y2-4x-2y+3≥0表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给定下列四个命题:
(1)若a2>b2,c2>d2,则|ac|>|bd|;
(2)Sn是等比数列{an}的前n项和,则必有:Sn(S3n-S2n)=(S2n-Sn2
(3)函数f(x)=lgsin(2x-$\frac{π}{3}$)的图象有对称轴;
(4)O是△ABC所在平面上一定点,动点P满足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{sinC}$$+\frac{\overrightarrow{AC}}{sinB}$),λ∈(0,+∞),则直线AP一定通过△ABC的内心;
其中正确命题的序号为(1)(2)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知若z1、z2是非零复数,且|z1+z2|=|z1-z2|.求证:$\frac{{z}_{1}}{{z}_{2}}$是纯虚数.

查看答案和解析>>

同步练习册答案