精英家教网 > 高中数学 > 题目详情
17.cos(-1920°)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 利用诱导公式,特殊角的三角函数值即可计算求值.

解答 解:cos(-1920°)=cos1920°=cos(5×360°+120°)=-cos60°=-$\frac{1}{2}$.
故选:A.

点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.扇形AOB周长为8,圆心角为2弧度,则其面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知:$x=\frac{3}{{\sqrt{5}+\sqrt{2}}}$,则$\sqrt{2}$可用含x的有理系数三次多项式来表示为:$\sqrt{2}$=$-\frac{1}{6}{x^3}+\frac{11}{6}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=Asin(2x+φ),其中角φ的终边经过点P(-l,1),且0<φ<π,f($\frac{π}{2}$)=-2,则φ=$\frac{3π}{4}$,A=2$\sqrt{2}$,f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的单调减区间为[-$\frac{π}{8}$,$\frac{3π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=$\frac{1}{{q}_{k}-1}$.
(1)若d1=2,求a2的值;
(2)求证:数列{bn}为等差数列;
(3)若q1=2,设cn=$\frac{{b}_{n}}{{b}_{n+1}}$,是否存在m、k(k>m≥2,k,m∈N*),使得c1、cm、ck成等比数列,若存在,求出所有符合条件的m、k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求和:
(1)$\sum_{k=1}^{10}$(3+2k);
(2)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+(6+$\frac{1}{27}$)+…+(2n+$\frac{1}{{3}^{n}}$);
(3)(a-1)+(a2-1)+(a3-1)+…+(an-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足a1=10,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$,则{an}中第一个小于$\frac{1}{10000}$的数是(  )
A.a12B.a13C.a14D.a15
E.a16         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设n≥2,且n∈N*,证明:(1+$\frac{1}{3}$)(1+$\frac{1}{5}$)(1+$\frac{1}{7}$)…(1+$\frac{1}{2n-1}$)>$\frac{\sqrt{2n+1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过点(-4,0)的曲线y=$\sqrt{x}$的切线与两坐标所围成三角形的面积为8.

查看答案和解析>>

同步练习册答案