精英家教网 > 高中数学 > 题目详情
设t∈R,若函数y=ex+tx有大于0的极值点,则实数t的取值范围是
 
考点:利用导数研究函数的极值
专题:导数的综合应用
分析:先对函数进行求导,令导函数等于0,原函数有大于0的极值点转化为导函数有大于零的根.
解答: 解:∵y=ex+tx,
∴y'=ex+t.
由题意知ex+t=0有大于0的实根,
由ex=-t,得t=-ex
∵x>0,
∴ex>1.
∴t<-1.
故答案为:{t|t<-1}.
点评:本题主要考查函数的极值与其导函数的关系,求解过程中用到了分离参数的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=wx0,则称x0是f(x)的一个“伸缩w倍点”,已知函数f(x)=ax2-ax-(a+3).
(1)当a=1,求函数f(x)的“伸缩2倍点”;
(2)当函数f(x)有唯一一个“伸缩3倍点”时,求二次函数f(x)=ax2-ax-(a+3)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正三棱台的上、下底面边长分别是3和6,高是2.
(1)求此三棱台的斜高;
(2)求此三棱台的侧面积与表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1),求证:an≤e2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x+2的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
4a2+x2
+
(x-a)2+a2
的最小值(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是函数f(x)的一个不动点,现给定一个实数a[a∈(4,5)],则函数f(x)=x2+ax+1的不动点共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+x2+b,g(x)=alnx
(1)若f(x)在x∈[-
1
2
,1)上的最大值为
3
8
,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax-3在x∈[2,4]上最大值为5,求a的值.

查看答案和解析>>

同步练习册答案