精英家教网 > 高中数学 > 题目详情
8.已知矩形ABCD,AB=4,AD=1,点E为DC的中点,则$\overrightarrow{AE}•\overrightarrow{BE}$=-3.

分析 根据条件,可分别以AB,AD所在直线为x轴,y轴,建立坐标系,然后可求出点A,B,E的坐标,进而求出向量$\overrightarrow{AE},\overrightarrow{BE}$的坐标,从而求出$\overrightarrow{AE}•\overrightarrow{BE}$的值.

解答 解:分别以边AB,AD所在直线为x,y轴,建立如图所示平面直角坐标系,则:

A(0,0),B(4,0),E(2,1);
∴$\overrightarrow{AE}=(2,1),\overrightarrow{BE}=(-2,1)$;
∴$\overrightarrow{AE}•\overrightarrow{BE}=-4+1=-3$.
故答案为:-3.

点评 考查通过建立坐标系,利用坐标解决向量问题的方法,根据点的坐标可求向量坐标,向量坐标的数量积运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数z满足zi=3+4i,若复数$\overline{z}$对应的点为M,则点M到直线3x-y+1=0的距离为(  )
A.$\frac{4\sqrt{10}}{5}$B.$\frac{7\sqrt{10}}{5}$C.$\frac{8\sqrt{10}}{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D获得火车票的概率分别是${p_1},\frac{1}{2},{p_3},\frac{1}{4}$,其中p1>p3,又${p_1},\frac{1}{2},2{p_3}$成等比数列,且A、C两人恰好有一人获得火车票的概率是$\frac{1}{2}$.
(1)求p1,p3的值;
(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯( Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC,分别以A,B,C为圆心,边长为半径,作圆弧$\widehat{BC},\widehat{CA},\widehat{AB}$,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).

在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为(  )
A.$\frac{π}{8}$B.$\frac{{2π-3\sqrt{3}}}{4}$C.$\frac{{π-\sqrt{2}}}{2}$D.$\frac{{π-\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点M(-1,0)和N(-1,0),若某直线上存在点p,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:
①x-2y+6=0
②x-y=0
③2x-y+1=0
④x+y-3=0
其中是“椭型直线”的是(  )
A.①③B.①②C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,点$P(1,\frac{3}{2})$在椭圆C上,满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=$\frac{9}{4}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线l1过点P,且与椭圆只有一个公共点,直线l2与l1的倾斜角互补,且与椭圆交于异于点P的两点M,N,与直线x=1交于点K(K介于M,N两点之间).
(ⅰ)求证:|PM|•|KN|=|PN|•|KM|;
(ⅱ)是否存在直线l2,使得直线l1、l2、PM、PN的斜率按某种排序能构成等比数列?若能,求出l2的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在底面为直角梯形的四棱锥P-ABCD中,E为PC的中点,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=2,AD=2,AB=2$\sqrt{3}$,BC=4.
(1)求证:DE∥平面PAB;
(2)求直线AE与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为比较甲乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(位:℃)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1℃,则甲地该月11时的平均气温的标准差为(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的函数f(x)满足:①f(x)+f(2-x)=0;②f(x)-f(-2-x)=0;③在[-1,1]上的表达式为$f(x)=\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ 1-x,x∈(0,1]\end{array}\right.$,则函数f(x)与$g(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$的图象在区间[-3,3]上的交点的个数为6.

查看答案和解析>>

同步练习册答案