精英家教网 > 高中数学 > 题目详情
11.已知命题p:实数x满足|x-a|<2,命题q:实数x满足$\frac{2x-1}{x+2}<1$.
(1)若命题q为真,求x的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.

分析 (1)通过解不等式求出x的范围即可;(2)分别求出关于p,q的x的范围,得到关于a的不等式组,解出即可.

解答 解:(1)解不等式$\frac{2x-1}{x+2}<1$,得:-2<x<3;
∴命题q为真时:-2<x<3;
(2)解不等式|x-a|<2,得p:-2+a<x<2+a,
若p是q的充分不必要条件,
则$\left\{\begin{array}{l}{-2+a>-2}\\{2+a<3}\end{array}\right.$,解得:0<a<1.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.1和9的等比中项是(  )
A.5B.3C.-3D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于N,过N 点的切线交C A 的延长线于P
(1)求证:PM2=PA.PC
(2)若MN=2,OA=$\sqrt{3}$OM,求劣弧$\widehat{BN}$的长.

查看答案和解析>>

科目:高中数学 来源:2017届湖北襄阳四中高三七月周考三数学(文)试卷(解析版) 题型:解答题

选修4-1:几何证明选讲

如图所示,在中,的角平分线,的外接圆交点.

(1)证明:

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某年青教师近五年内所带班级的数学平均成绩统计数据如表:
年份x年20092010201120122013
平均成绩y分9798103108109
(1)利用所给数据,求出平均分与年份之间的回归直线方程$\hat y=bx+a$
(2)利用(1)中所求出的直线方程预测该教师2015年所带班级的数学平均成绩.
参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四面体ABCD的各面均是边长为1的正三角形,设E,G分别为△BCD,△ABC的中心,分别以$\overrightarrow{AB}$,$\overrightarrow{GC}$,$\overrightarrow{GD}$方向上的单位向量构成一个基底$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,则向量$\overrightarrow{AE}$的坐标是($\frac{2}{3}$,$\frac{2\sqrt{3}}{9}$,$\frac{\sqrt{6}}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点(0,2a)且垂直y轴的直线与y=|ax-1|有两个交点,求实数a的取值范围$({0,\frac{1}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在锐角△ABC中,∠A=60°,BC=2,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.3π+2$\sqrt{2}$-1B.3π+2$\sqrt{2}$C.2π+2$\sqrt{2}$-1D.2π+2$\sqrt{2}$

查看答案和解析>>

同步练习册答案