| 年份x年 | 2009 | 2010 | 2011 | 2012 | 2013 |
| 平均成绩y分 | 97 | 98 | 103 | 108 | 109 |
分析 (1)先利用数据平均值的公式求出x,y的平均值,再计算b,a的值,即可求出平均分与年份之间的回归直线方程$\hat y=bx+a$,根据b>0,可得成绩与年份成正相关关系;
(2)x=2015,代入回归直线方程,即可预测该教师2015年所带班级的数学平均成绩.
解答 解:(1)由题意,$\overline{x}$=$\frac{1}{5}$(2009+2010+2011+2012+2013)=2011,$\overline{y}$=$\frac{1}{5}$(97+98+103+108+109)=103,…(2分)
b=$\frac{(-2)(-6)+(-1)(-5)+0×0+1×5+2×6}{(-2)^{2}+{1}^{2}+{0}^{2}+{1}^{2}+{2}^{2}}$=3.4…(4分)
a=103-3.4×2011=-6734.4…(6分)
∴y=3.4x-6734.4,
∵b>0
∴成绩与年份成正相关关系…(8分)
(2)y=3.4x-6734.4=3.4×2.15-6734.4=116.6
∴预测2015年该班的数学平均成绩为116.(6分) …(12分)
点评 解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,利用回归直线方程可预测.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{19}}{3}$ | B. | $\frac{2\sqrt{10}}{3}$ | C. | $\frac{\sqrt{30}}{3}$ | D. | $\frac{2\sqrt{30}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com