精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},|x|≤1}\\{|x|,|x|>1}\end{array}\right.$,若方程f(x)=a有且只有一个实根,则实数a的值是1.

分析 作函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},|x|≤1}\\{|x|,|x|>1}\end{array}\right.$的图象,从而化方程的解与函数的图象的交点.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},|x|≤1}\\{|x|,|x|>1}\end{array}\right.$的图象如下,

结合图象可知,当a=1时,
方程f(x)=a有且只有一个实根,
故答案为:1.

点评 本题考查了方程的根与函数的零点的关系应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x+x2;则当x≥0时,f(x)=-2x+x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知n∈N+,函数f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n+1}$,则f(2)-f(1)=-$\frac{1}{20}$;f(n+1)-f(n)=-$\frac{1}{4{n}^{2}+10n+6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于N,过N 点的切线交C A 的延长线于P
(1)求证:PM2=PA.PC
(2)若MN=2,OA=$\sqrt{3}$OM,求劣弧$\widehat{BN}$的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知${a^{\frac{2}{3}}}=\frac{4}{9}$,其中a>0,则$lo{g_a}\frac{4}{9}$=$\frac{2}{3}$; $lo{g_a}\frac{2}{3}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源:2017届湖北襄阳四中高三七月周考三数学(文)试卷(解析版) 题型:解答题

选修4-1:几何证明选讲

如图所示,在中,的角平分线,的外接圆交点.

(1)证明:

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某年青教师近五年内所带班级的数学平均成绩统计数据如表:
年份x年20092010201120122013
平均成绩y分9798103108109
(1)利用所给数据,求出平均分与年份之间的回归直线方程$\hat y=bx+a$
(2)利用(1)中所求出的直线方程预测该教师2015年所带班级的数学平均成绩.
参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点(0,2a)且垂直y轴的直线与y=|ax-1|有两个交点,求实数a的取值范围$({0,\frac{1}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[12,13),第二组[13,14),…,第五组[16,17],如图是根据上述分组得到的频率分布直方图.
(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计本年级800名学生中,成绩属于第三组的人数;
(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取1名学生组成一个实验组,求所抽取的2名同学中恰好为一名男生和一名女生的概率.

查看答案和解析>>

同步练习册答案