精英家教网 > 高中数学 > 题目详情
已知A(8,0),B、C两点分别在y轴上和x轴上运动,并且满足
AB
BP
=0,
BC
=
CP

(1)求动点P的轨迹方程;
(2)若过点A的直线l与动点P的轨迹交于M、N两点,
QM
QN
=97,其中Q(-1,0),求直线l的方程.
(1)设B(0,b),C(c,0),P(x,y),则
AB
=(-8,b),
BP
=(x,y-b)

AB
BP
=-8x+b(y-b)=0 ①
BC
=
CP
,得(c,-b)=(x-c,y),
∴b=-y,
代入①并化简得,y2=4x;
(2)设l:x=my+8 ②
把②代入y2=4x,整理得
y2-4my-32=0,
设M(x1,y1),N(x2,y2),则
y1+y2=4m,y1y2=-32.
由②得,x1+x2=m(y1+y2)+16=4m2+16
x1x2=(my1+8)(my2+8)=m2y1y2+8m(y1+y2)+64=64
QM
QN
=(x1+1)(x2+1)+y1y2

=x1x2+(x1+x2)+1+y1y2
=64+4m2+16+1-32
=4m2+49=97,
解得:m=土2
3

∴l:x土2
3
y-8=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于方程
x2
2
+
y2
m-1
=1
(m∈R且m≠1)的曲线C,下列说法错误的是(  )
A.m>3时,曲线C是焦点在y轴上的椭圆
B.m=3时,曲线C是圆
C.m<1时,曲线C是双曲线
D.m>1时,曲线C是椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在直角坐标系xoy中,AB是半圆O:x2+y2=1(y≥0)的直径,点C是半圆O上任一点,延长AC到点P,使CP=CB,当点C从点B运动到点A时,动点P的轨迹的长度是(  )
A.2πB.
2
π
C.πD.4
2
π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条线段的长等于10,两端点A、B分别在x轴和y轴上滑动,M在线段AB上且
AM
=4
MB
,则点M的轨迹方程是(  )
A.x2+16y2=64B.16x2+y2=64C.x2+16y2=8D.16x2+y2=8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设x,y∈R,若向量
a
=(x,y+2)
b
=(x,y-2)
,且|
a
|-|
b
|=2
,则点M(x,y)的轨迹C的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点P(x1,y1)在曲线y=2x2+1上移动,则点P与点(0,-l)连线中点的轨迹方程为(  )
A.y=2x2B.y=4x2C.y=6x2D.y=8x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若△ABC的个顶点坐标A(-4,0)、B(4,0),△ABC的周长为18,则顶点C的轨迹方程为(  )
A.
x2
25
+
y2
9
=1
B.
y2
25
+
x2
9
=1
(y≠0)
C.
x2
16
+
y2
9
=1
(y≠0)
D.
x2
25
+
y2
9
=1
(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)判断直线l与圆C的位置关系;
(2)设l与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB为
AP
PB
=
1
2
,求此时直线l的方程.

查看答案和解析>>

同步练习册答案