精英家教网 > 高中数学 > 题目详情
设直角三角形斜边为c,直角边分别为a,b,求证:log(b+c)a+log(c-b)a=2log(b+c)a•log(c-b)a.
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的换底公式、对数的运算法则、勾股定理即可得出.
解答: 证明:左边=
lga
lg(b+c)
+
lga
lg(c-b)
=
lga×lg(c2-b2)
lg(b+c)lg(c-b)
=
lga•lga2
lg(b+c)lg(c-b)
=2log(b+c)a•log(c-b)a=右边,
∴等式成立.
点评:本题考查了对数的换底公式、对数的运算法则、勾股定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+1|,x≤0
|log2x|,x>0
,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+
1
x
2
3
x4
的取值范围是(  )
A、(-1,+∞)
B、(-1,1]
C、(-∞,1)
D、[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
实验顺序第一次第二次第三次第四次第五次
零件数x(个)1020304050
加工时间y(分钟)6267758089
(Ⅰ)在5次试验中任取2次,记加工时间分别为a,b,求事件:加工时间a,b均小于80分钟的概率;
(Ⅱ)请根据第二次、第三次、第四次试验的数据,求出y关于x的线性回归方程
y
=
b
x+
a
,参考公式如下:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x
.
x
=
x1+x2+…+xn
n
.
y
=
y1+y2+…+yn
n

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C、D是空间不共面的四点,且满足AB⊥AC,AB⊥AD,AC⊥AD,则△BCD是(  )
A、钝角三角形B、直角三角形
C、锐角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3-a)x+1,x<1
ax(a>0且a≠1),x≥1
,满足对任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0成立,那么a的取值范围是(  )
A、(1,3)
B、(1,2]
C、[2,3)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:|
lg23-lg9+1
-3|结果是(  )
A、lg3-2
B、2-lg3
C、2+lg3
D、-2-lg3

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(λ+2,λ2-
3
cos2α),
b
=(m,
m
2
+sinαcosα)其中λ,m,α为实数.
(Ⅰ)若α=
π
12
,且
a
b
,求m的取值范围;
(Ⅱ)若
a
=2
b
,求
λ
m
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
不共线,试判断
a
+
b
a
-
b
是否共线?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q,a1=b1=1,a2=b2,a5=b3则公比q=
 

查看答案和解析>>

同步练习册答案