精英家教网 > 高中数学 > 题目详情
14.已知函数f(x+a)=|x-2|-|x+2|,且f[f(a)]=3,则a的值为$\frac{3}{2}$.

分析 根据函数f(x+a)的解析式,令x=0求出f(a)的值,
再由f[f(a)]=3,得出|a+2|-|a-2|=3,去掉绝对值,即可求出a的值.

解答 解:∵函数f(x+a)=|x-2|-|x+2|,
令x=0,则f(a)=2-2=0,
∴f[f(a)]=f(0)=3;
即x=-a时,f(-a+a)=3,
∴|a+2|-|a-2|=3;
当a≥2时,(a+2)-(a-2)=3,即4=3,不合题意;
当2>a>-2时,(a+2)-(2-a)=3,即a=$\frac{3}{2}$;
当a≤-2时,-(a+2)-(2-a)=3,即-4=3,不合题意;
综上,a=$\frac{3}{2}$,即a的值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了函数的性质与应用问题,也考查了绝对值的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线y=m与函数f(x)=sin2ωx-sinωxcosωx(ω>0)的图象相切,并且两相邻切点的横坐标之差为$\frac{π}{2}$.
(1)求ω,m的值.
(2)求f(x)在[0,$\frac{π}{2}$]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线C的方程为x2+y2=1,A(-2,0),存在一定点B(b,0)(b≠-2)和常数λ,对曲线C上的任意一点M(x,y),都有|MA|=λ|MB|成立,则点P(b,λ)到直线(m+n)x+ny+2n+2m=0距离的最大值为$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过双曲线$\frac{x^{2}}{a^{2}}$-$\frac{y^{2}}{b^{2}}$=1(a>0,b>0)上一点P做直线PA,PB交双曲线于A,B两点,且斜率分别为k1,k2,若直线AB过原点,k1•k2=2,则双曲线的离心率e等于(  )
A.$\sqrt{3}$B.3C.$\frac{\sqrt{6}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}的通项公式为an=$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n+1}$,若对任意的n∈N*,都有$\frac{11}{6}$log(a-1)a-$\frac{11}{3}$loga(a-1)>an,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=f(x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0,$\frac{π}{n}$]上的面积为$\frac{2}{n}$(n∈N*),则函数y=sin(3x-π)+1在[$\frac{π}{3}$,$\frac{4π}{3}$]上的面积为(  )
A.π+$\frac{8}{3}$B.π+2C.π+1D.π+$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).写出直线l与曲线C的直角坐标系下的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1所示,直角梯形ABCD,AD∥BC,AD⊥AB,AB=BC=2AD=4,E、F为线段AB、CD上的点,且EF∥BC,设AE=x,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图2所示).
(Ⅰ)若以B、C、D、F为顶点的三棱锥体积记为f(x),求f(x)的最大值及取最大值时E的位置;
(Ⅱ)在(1)的条件下,试在线段EF上的确定一点G使得CG⊥BD,并求直线GD与平面BCD所成的角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,半圆O的直径为2,点A为直径延长线上的一点,OA=2,点B为半圆上任意一点作正△ABC,问:点B在什么位置上时,四边形OACB的面积最大?并求出这个最大面积.

查看答案和解析>>

同步练习册答案