| A. | $\sqrt{3}$ | B. | 3 | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3}{2}$ |
分析 由于A,B连线经过坐标原点,所以A,B一定关于原点对称,利用直线PA,PB的斜率乘积,可寻求几何量之间的关系,从而可求离心率.
解答 解:根据双曲线的对称性可知A,B关于原点对称,
设A(x1,y1),B(-x1,-y1),P(x,y),
则$\frac{{{x}_{1}}^{2}}{{a}^{2}}-\frac{{{y}_{1}}^{2}}{{b}^{2}}=1$,$\frac{{{x}_{2}}^{2}}{{a}^{2}}-\frac{{{y}_{2}}^{2}}{{b}^{2}}=1$,
∴k1•k2=$\frac{{y}_{1}-y}{{x}_{1}-x}•\frac{-{y}_{1}-y}{-{x}_{1}-x}$=$\frac{{b}^{2}}{{a}^{2}}$=2,
∴该双曲线的离心率e=$\sqrt{1+2}$=$\sqrt{3}$.
故选:A.
点评 本题主要考查双曲线的几何性质,考查点差法,关键是设点代入化简,应注意双曲线几何量之间的关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com