精英家教网 > 高中数学 > 题目详情
2.过双曲线$\frac{x^{2}}{a^{2}}$-$\frac{y^{2}}{b^{2}}$=1(a>0,b>0)上一点P做直线PA,PB交双曲线于A,B两点,且斜率分别为k1,k2,若直线AB过原点,k1•k2=2,则双曲线的离心率e等于(  )
A.$\sqrt{3}$B.3C.$\frac{\sqrt{6}}{2}$D.$\frac{3}{2}$

分析 由于A,B连线经过坐标原点,所以A,B一定关于原点对称,利用直线PA,PB的斜率乘积,可寻求几何量之间的关系,从而可求离心率.

解答 解:根据双曲线的对称性可知A,B关于原点对称,
设A(x1,y1),B(-x1,-y1),P(x,y),
则$\frac{{{x}_{1}}^{2}}{{a}^{2}}-\frac{{{y}_{1}}^{2}}{{b}^{2}}=1$,$\frac{{{x}_{2}}^{2}}{{a}^{2}}-\frac{{{y}_{2}}^{2}}{{b}^{2}}=1$,
∴k1•k2=$\frac{{y}_{1}-y}{{x}_{1}-x}•\frac{-{y}_{1}-y}{-{x}_{1}-x}$=$\frac{{b}^{2}}{{a}^{2}}$=2,
∴该双曲线的离心率e=$\sqrt{1+2}$=$\sqrt{3}$.
故选:A.

点评 本题主要考查双曲线的几何性质,考查点差法,关键是设点代入化简,应注意双曲线几何量之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图1,在Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=2,D,E分别为AC,BD的中点,连接AE并延长BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2,所示,
(1)求证:AE⊥平面BCD;
(2)求平面AEF与平面ADC所成的锐角二面角的余弦值;
(3)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指出点M的位置;若存在,请指出点M的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示的一块长方体木料中,已知AB=BC=4,AA1=1,设E为底面ABCD的中心,且$\overrightarrow{AF}=λ\overrightarrow{AD}$(0≤λ≤$\frac{1}{2}$),则该长方体中经过点A1、E、F的截面面积的最小值为$\frac{12\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在复平面内一动点M所对应的复数z,z≠1,且满足$\frac{z-1}{z+1}$是纯虚数,又复数ω=$\frac{4}{(1+z)^{2}}$,它对应复平面上的动点P,在动点P(x,y)的集合中,是否存在关于直线y=x对称的两点,若存在,试求出这两点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知z>0,x+y+z=1,x2+y2+z2=3,则$\frac{xy}{z}$的最大值为$\frac{1}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cosα=-$\frac{\sqrt{15}}{4}$,$\frac{α}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),则cos$\frac{α}{2}$-sin$\frac{α}{2}$的值等于-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x+a)=|x-2|-|x+2|,且f[f(a)]=3,则a的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)和g(x)都是定义域在R上的奇函数,若F(x)=af(x)+bg(x)+2,在(0,+∞)上有最大值为5,求F(x)在(-∞,0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知CD是△ABC的边AB上的高,点E、F、G分别是AD、AC、BD的中点,且CD=DB=2,AE=$\sqrt{2}$现沿EF和CD把△AEF和△BCD折起,使A、B两点重合与点P
(Ⅰ)求证:EG∥平面PFC
(Ⅱ)求平面PEC与平面PFC所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案