【题目】给出下列说法:①用
刻画回归效果,当
越大时,模型的拟合效果越差,反之则越好;②归纳推理是由特殊到一般的推理,而演绎推移则是由一般到特殊的推理;③综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”;④设有一个回归方程
,变量
增加1个单位时,
平均增加5个单位;⑤线性回归方程
必过点
.其中错误的个数有( )
A. 0个 B. 1个 C. 2个 D. 3个
科目:高中数学 来源: 题型:
【题目】对某种书籍每册的成本费
(元)与印刷册数
(千册)的数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中
,
.
为了预测印刷20千册时每册的成本费,建立了两个回归模型:
,
.
(1)根据散点图,你认为选择哪个模型预测更可靠?(只选出模型即可)
(2)根据所给数据和(1)中选择的模型,求
关于
的回归方程,并预测印刷20千册时每册的成本费.
附:对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战和不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下
列联表:
性别 成绩 | 接受挑战 | 不接受挑战 | 总计 |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
总计 | 70 | 30 | 100 |
根据表中数据,能有有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:
,其中
.
| 2.706 | 3.841 | 6.635 | 10.828 |
| 0.10 | 0.05 | 0.010 | 0.001 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,对任意
满足
,且
,数列
满足
,其前9项和为63.
(1)求数列
和
的通项公式;
(2)令
,数列
的前
项和为
,若对任意正整数
,都有
,求实数
的取值范围;
(3)将数列
的项按照“当
为奇数时,
放在前面;当
为偶数时,
放在前面”的要求进行“交叉排列”,得到一个新的数列:
,求这个新数列的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(写出所有正确命题的编号).
①当0<CQ<
时,S为四边形
②当CQ=
时,S为等腰梯形
③当CQ=
时,S与C1D1的交点R满足C1R=
④当
<CQ<1时,S为六边形
⑤当CQ=1时,S的面积为
.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有直线
和平面
,则下列四个命题中,正确的是( )
A. 若m∥α,n∥α,则m∥nB. 若mα,nα,m∥β,l∥β,则α∥β
C. 若α⊥β,mα,则m⊥βD. 若α⊥β,m⊥β,mα,则m∥α
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com