精英家教网 > 高中数学 > 题目详情
11.如图1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=$\frac{1}{2}$CP=2,D是CP的中点,将△PAD沿AD折起,使得PD⊥CD.

(Ⅰ)若E是PC的中点,求证:AP∥平面BDE;
(Ⅱ)求证:平面PCD⊥平面ABCD;
(Ⅲ)求二面角A-PB-C的大小.

分析 (Ⅰ)连接AC交BD于点O,连接OE,推导出OE∥AP,由此能证明AP∥平面BDE.
(Ⅱ)推导出AD⊥PD,AD⊥CD,从而AD⊥平面PCD,由此能证明平面PCD⊥平面ABCD.
(Ⅲ)以D为坐标原点,DA,DC,DP所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角A-PB-C的大小.

解答 证明:(Ⅰ)连接AC交BD于点O,连接OE,
在正方形ABCD中,O为AC的中点,又因为E为PC的中点,
所以OE为△PAC的中位线,
所以OE∥AP,
又因为OE?平面BDE,AP?平面BDE,
所以AP∥平面BDE.
(Ⅱ)由已知可得AD⊥PD,AD⊥CD,
又因为PD∩CD=D,PD,CD?平面PCD,
所以AD⊥平面PCD,
又因为AD?平面ABCD,
所以平面PCD⊥平面ABCD.
解:(Ⅲ)由(Ⅱ)知AD⊥平面PCD,所以AD⊥PD,又因为PD⊥CD,且AD∩CD=D,
所以PD⊥平面ABCD,
所以以D为坐标原点,DA,DC,DP所在直线分别为x,y,z轴,建立空间直角坐标系,
则P(0,0,2),A(2,0,0),B(2,2,0),C(0,2,0),
所以$\overrightarrow{AP}=(-2,0,2)$,$\overrightarrow{AB}=(0,2,0)$,
设平面APB的一个法向量为$\overrightarrow m=(a,b,c)$,
所以$\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{AP}=0\\ \overrightarrow m•\overrightarrow{AB}=0\end{array}\right.$即$\left\{\begin{array}{l}2b=0\\-2a+2c=0\end{array}\right.$
令a=1,则c=1,从而$\overrightarrow m=(1,0,1)$,
同理可求得平面PBC的一个法向量为$\overrightarrow n=(0,1,1)$,
设二面角A-PB-C的大小为θ,易知$θ∈(\frac{π}{2},π)$,
所以$cosθ=-|cos<\overrightarrow m,\overrightarrow n>|=-\frac{\overrightarrow m•\overrightarrow n}{|\overrightarrow m|•|\overrightarrow n|}=-\frac{1}{2}$,所以$θ=\frac{2π}{3}$,
所以二面角A-PB-C的大小为$\frac{2π}{3}$.

点评 本题考查线面平行、面面垂直的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.一个三角形可分为以内切圆半径为高,以原三角形三条边为底的三个三角形,类比此方法,若一个三棱锥的体积V=2,表面积S=3,则该三棱锥内切球的体积为(  )
A.81πB.16πC.$\frac{32π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{a+1}{2}{x^2}+ax-1$,$g(x)=\frac{1}{2}(a-4){x^2}$,其中a≥1.
(Ⅰ)f(x)在(0,2)上的值域为(s,t),求a的取值范围;
(Ⅱ)若a≥3,对于区间[2,3]上的任意两个不相等的实数x1、x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=2,a2=4,设Sn为数列{an}的前n项和,对于任意的n>1,n∈N*,Sn+1+Sn-1=2(Sn+1).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{n}{{2}^{{a}_{n}}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设不等式组$\left\{\begin{array}{l}3x+y-10≥0\\ x+3y-6≤0\end{array}\right.$表示的平面区域为D,若函数y=logax(a>1)的图象上存在区域D上的点,则实数a的取值范围是(  )
A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i为虚数单位,复数$z=\frac{1-i}{3-i}$的虚部是(  )
A.$\frac{1}{5}$B.$-\frac{1}{5}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sin2a=2-2cos2a,则tana=0或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图程序框图,输出a的结果为(  )
A.初始值aB.三个数中的最大值
C.三个数中的最小值D.初始值c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合U=R,A={x|(x+l) (x-2)<0},则∁UA=(  )
A.(一∞,-1)∪(2,+∞)B.[-l,2]C.(一∞,-1]∪[2,+∞)D.(一1,2)

查看答案和解析>>

同步练习册答案