精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sinωx+cos(ωx+
π
6
),其中x∈R,ω>0.
(1)当ω=1时,求f(
π
3
)的值;
(2)当f(x)的最小正周期为π,求f(x)在区间[0,
π
4
]上取得最大值时x的值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(1)根据ω=1,得到函数f(x)=sinx+cos(x+
π
6
),然后,直接求解f(
π
3
)的值;
(2)首先,化简函数f(x)=sin(ωx+
π
3
),然后,结合周期公式,得到ω=2,再结合x∈[0,
π
4
],从而求解相应的x的值.
解答: 解(1)∵ω=1,
∴函数f(x)=sinx+cos(x+
π
6
),
∴f(
π
3
)=sin
π
3
+cos(
π
3
+
π
6
)=
3
2
+0=
3
2

∴f(
π
3
)的值
3
2

(2)∵函数f(x)=sinωx+cos(ωx+
π
6

=
1
2
sinωx+
3
2
cosωx
=sin(ωx+
π
3
),
∵T=
ω
=π,
∴ω=2,
∴f(x)=sin(2x+
π
3
),
∵x∈[0,
π
4
],
∴(2x+
π
3
)∈[
π
3
6
],
∴当2x+
π
3
=
π
2
时,即x=
π
12
时,f(x)在区间[0,
π
4
]上取得最大值1.
点评:本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i是虚数单位,复数
2a+1
5
+
a+2
5
i是纯虚数,则实数a=(  )
A、-2
B、
1
2
C、-
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
3-ai
i
(i为虚数单位且a<0)在复平面内对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足:z+|z|=1+2i,则z的虚部为(  )
A、2iB、1C、2D、i

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有630名学生,男女生人数之比为11:10,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
1
6

(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下2×2列联表:
否定 肯定 总计
男生 10
女生 30
总计
①完成列联表;
②能否有97.5%的把握认为态度与性别有关?
(3)若一班有5名男生被抽到,其中4人持否定态度,1人持肯定态度;二班有4名女生被抽到,其中2人持否定态度,2人持肯定态度.现从这9人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度,一人持否定态度的概率.解答时可参考下面公式及临界值表:k0=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)
AD 0.10 0.05 0.025 0.010 0.005
O 2.706 3.841 5.024 6.635 7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:直线x-y+m=0与圆x2+y2-2x-4y+3=0没有公共点.q:不等式x-
1
x
-m≥0对于任意x∈[2,3]恒成立.若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(4,a)(a>0)在抛物线C:y2=2px(p>0)上,P点到抛物线C的焦点F的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知圆E:x2+y2=2x,过圆心E作直线l与圆E和抛物线C自上而下依次交于A、B、C、D,如果|AB|+|CD|=2|BC|,求直线l的方程;
(Ⅲ)过点Q(4,2)的任一直线(不过P点)与抛物线C交于A、B两点,直线AB与直线y=x+4交于点M,记直线PA、PB、PM的斜率分别为k1、k2、k3,问是否存在实数λ,使得k1+k2=λk3,若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知
AB
=(1,1),
CD
=(-2,-3),设
BC
=(x,y).
(1)若四边形ABCD为梯形,求x、y间的函数的关系式;
(2)若以上梯形的对角线互相垂直,求
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为 x2-30x+6000元(其中x为产品件数).
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该产品是供不应求的商品,根据市场调查,每件产品的销售价为Q(x)=1240-
1
30
x2,试问当产量处于什么范围时,工厂4处于生产潜力提升状态(生产潜力提升状态是指如果产量再增加,则获得的总利润也将随之增大)?

查看答案和解析>>

同步练习册答案