ÒÑÖªF1£¬F2·Ö±ðÊÇÍÖÔ²C1£º
x2
a2
+y2=1£¨a£¾1£©µÄ×ó¡¢ÓÒ½¹µã£¬OÎª×ø±êÔ­µã£®
£¨¢ñ£©ÈôÍÖÔ²C1ÓëË«ÇúÏßC2£º
y2
3
-
x2
1
=1µÄÀëÐÄÂÊ»¥Îªµ¹Êý£¬Çó´ËʱʵÊýaµÄÖµ£»
£¨¢ò£©ÈôÖ±Ïßl¾­¹ýµãF1ºÍµã£¨0£¬1£©£¬ÇÒÔ­µãµ½Ö±ÏßlµÄ¾àÀëΪ
2
2
£»ÓÖÁíÒ»ÌõÖ±Ïßm£¬Ð±ÂÊΪ1£¬ÓëÍÖÔ²C1½»ÓÚE£¬FÁ½µã£¬
OE
¡Í
OF
£¬ÇóÖ±ÏßmµÄ·½³Ì£»
£¨¢ó£©ÈôÔÚÖ±Ïßx=
a2
a2-1
ÉÏ´æÔÚµãP£¬Ê¹Ïß¶ÎPF1µÄÖеãM
MF2
¡Í
PF1
£®ÇóʵÊýaµÄȡֵ·¶Î§£®
¿¼µã£ºÔ²×¶ÇúÏßµÄ×ÛºÏ,Ö±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ
רÌ⣺¼ÆËãÌâ,Æ½ÃæÏòÁ¿¼°Ó¦ÓÃ,Ö±ÏßÓëÔ²,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©Çó³öË«ÇúÏßµÄÀëÐÄÂÊ£¬¿ÉµÃÍÖÔ²µÄÀëÐÄÂÊ£¬ÔÙÓÉÀëÐÄÂʹ«Ê½£¬¿ÉµÃa=2£»
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪx-cy+c=0£¬Óɵ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉµÃc£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£¬ÉèÖ±Ïßm£ºy=x+d£¬´úÈëÍÖÔ²·½³Ì£¬Ó¦ÓÃΤ´ï¶¨Àí£¬¼°ÏòÁ¿´¹Ö±µÄÌõ¼þ£¬¼´¿ÉµÃµ½d£¬½ø¶øµÃµ½Ö±Ïß·½³Ì£»
£¨¢ó£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬P£¨
a2
c
£¬t£©£¬Çó³öÏòÁ¿µÄ×ø±ê£¬ÔÙÓÉ
MF2
¡Í
PF1
£¬ÔËÓÃÊýÁ¿»ýΪ0£¬ÔÙÓÉ
t2
2
¡Ý0£¬½â²»µÈʽ¼´¿ÉµÃµ½aµÄ·¶Î§£®
½â´ð£º ½â£º£¨¢ñ£©Ë«ÇúÏßC2£º
y2
3
-
x2
1
=1µÄÀëÐÄÂÊΪe2=
3+1
3
=
2
3
£¬
ÔòÍÖÔ²C1£º
x2
a2
+y2=1£¨a£¾1£©µÄÀëÐÄÂÊe1=
1
e2
=
3
2
£¬
¼´ÓÐ
a2-1
a
=
3
2
£¬½âµÃ£¬a=2£»
£¨¢ò£©ÉèF1£¨-c£¬0£©£¬Ö±ÏßlµÄ·½³ÌΪx-cy+c=0£¬
Ôòd=
|c|
1+c2
=
2
2
£¬Ôòc=1£¬a2=b2+c2=2£¬
ÔòÍÖÔ²·½³ÌΪ
x2
2
+y2=1£¬
ÉèÖ±Ïßm£ºy=x+d£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¬3x2+4dx+2d2-2=0£¬
ÓÉÖ±ÏßmÓëÍÖÔ²½»ÓÚE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
Ôò¡÷=16d2-12£¨2d2-2£©£¾0£¬½âµÃd2£¼3£¬
ÓÖx1+x2=-
4d
3
£¬x1x2=
2d2-2
3
£¬
ÓÉÓÚOE¡ÍOF£¬Ôòx1x2+y1y2=0£¬¼´x1x2+£¨x1+d£©£¨x2+d£©=0£¬
¼´
4d2-4
3
-
4d2
3
+d2=0£¬½âµÃ£¬d2=
4
3
£¼3£¬¼´ÓÐd=¡À
2
3
3
£¬
ÔòÖ±ÏßmµÄ·½³ÌΪy=x¡À
2
3
3
£»
£¨¢ó£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
P£¨
a2
c
£¬t£©£¬
F1P
=£¨
a2
c
+c£¬t£©£¬ÖеãM£¨
a2-c2
2c
£¬
t
2
£©£¬
F2M
=£¨
a2-c2
2c
-c£¬
t
2
£©=£¨
a2-3c2
2c
£¬
t
2
£©£¬
ÓÉÓÚ
MF2
¡Í
PF1
£¬Ôò
a2+c2
c
¡Á
a2-3c2
2c
+
t2
2
=0£¬
Ôò
t2
2
=
(a2+c2)(a2-3c2)
2c2
=
(2a2-1)(2a2-3)
2(a2-1)
¡Ý0£¬
ÓÉÓÚa£¾1£¬Ôò£¨2a2-1£©£¨2a2-3£©¡Ý0£¬
¼´ÓÐa2¡Ý
3
2
£¬½âµÃ£¬a¡Ý
6
2
£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²ºÍË«ÇúÏߵķ½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£®Ïûȥδ֪Êý£¬Ó¦ÓÃΤ´ï¶¨Àí£¬¿¼²éÆ½ÃæÏòÁ¿µÄ´¹Ö±µÄÌõ¼þ£¬¿¼²é»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

·½³Ì|x2-1|+1=2x½âµÄ¸öÊýΪ£¨¡¡¡¡£©
A¡¢1B¡¢2C¡¢3D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ê×ÏîºÍ¹«±È¶¼ÊÇ3µÄµÈ±ÈÊýÁÐ{an}£¬ÆäǰnÏîºÍSn=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=2an£¬ÊýÁÐ{bn}Âú×ãb1=3£¬b2=6£¬ÇÒ{bn-an}ΪµÈ²îÊýÁУ¬
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©Çó{bn}µÄǰnÏîºÍºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA£¬B£¬CÊDz»¹²ÏßµÄÈýµã£¬
m
Óë
AB
ÊÇÆ½ÐÐÏòÁ¿£¬Óë
BC
Êǹ²ÏßÏòÁ¿£¬Ôò
m
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}µÄǰ3ÏîºÍS3=9£¬ÇÒa1¡¢a2¡¢a5³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an£©µÄͨÏʽ£»
£¨2£©ÉèTnΪÊýÁÐ{
1
anan+1
}µÄǰnÏîºÍ£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃüÌâP£ºº¯Êýf£¨x£©=a-xÔÚ¶¨ÒåÓò£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝÔö£» ÃüÌâQ£º²»µÈʽ£¨a-2£©x2+2£¨a-2£©x-4£¼0¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£®
£¨1£©ÈôP¡ÅQÊÇÕæÃüÌ⣬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÒÑÖªº¯Êýf£¨x£©=a-xÔÚ¶¨ÒåÓò£¨-¡Þ£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒm¡Ê£¨-¡Þ£¬+¡Þ£©£¬Ð´³öÃüÌ⣺¡°Èôm+1£¾0£¬Ôòf£¨m£©+f£¨1£©£¾f£¨-m£©+f£¨-1£©¡±µÄÄæÃüÌ⣮·ñÃüÌâ£®Äæ·ñÃüÌ⣬²¢·Ö±ðÅжÏÄæÃüÌ⣮·ñÃüÌâ£®Äæ·ñÃüÌâµÄÕæ¼Ù£¨²»ÒªÖ¤Ã÷£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÔڱ߳¤Îª1µÄÕýÈý½ÇÐÎABCµÄ±ßBCÉÏÓÐn£¨n¡ÊN*£¬n¡Ý2£©µÈ·Öµã£¬ÑØÏòÁ¿
BC
µÄ·½ÏòÒÀ´ÎΪP1£¬P2£¬¡­£¬Pn£¬¼ÇTn=
AB
AP1
+
AP1
AP2
+¡­+
APn-1
AC
£¬Èô¸ø³öËĸöÊýÖµ£º¢Ù
29
4
¢Ú
91
10
¢Û
197
18
 ¢Ü
232
33
£¬ÔòTnµÄÖµ²»¿ÉÄܹ²ÓУ¨¡¡¡¡£©
A¡¢1¸öB¡¢2¸öC¡¢3¸öD¡¢4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf(x)=cos(?x+
¦Ð
3
)•sin(?x-
¦Ð
2
)+cos2?x-
1
4
£¨?£¾0£©Í¼ÏóÉϵÄÏàÁÚµÄ×î¸ßµãÓë×îµÍµãÖ®¼äµÄ¾àÀëΪ
2
£®
£¨1£©Çó?µÄÖµ¼°µ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Éè¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒb+c=2£¬A=
¦Ð
3
£¬Çóf£¨a£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸