精英家教网 > 高中数学 > 题目详情
12.设实数x,y满足约束条件$\left\{\begin{array}{l}{1≤x≤3}\\{-1≤x-y≤0}\end{array}\right.$
(Ⅰ)求z=2x-y的最大值;
(Ⅱ)求z=$\sqrt{{x}^{2}+{y}^{2}}$的取值范围.

分析 由约束条件作出可行域.
(1)化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案;
(2)直接由$\sqrt{{x}^{2}+{y}^{2}}$的几何意义求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{1≤x≤3}\\{-1≤x-y≤0}\end{array}\right.$作出可行域如图,

(1)由z=2x-y,得y=2x-z,
由图可知,当直线y=2x-z过点B(3,3)时,直线在y轴上的截距最小,z有最大值为2×3-3=3;
(2)联立$\left\{\begin{array}{l}{x=3}\\{x-y=-1}\end{array}\right.$,得C(3,4).
z=$\sqrt{{x}^{2}+{y}^{2}}$的几何意义为可行域内的动点到原点的距离,
由图可知,zmin=|OA|=$\sqrt{2}$.
zmax=|OC|=$\sqrt{{3}^{2}+{4}^{2}}$=5.
∴z的取值范围是[$\sqrt{2}$,5].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
(2)已知x2-y2+2xyi=2i,求实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{7}$C.$\frac{2}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|(x+1)(x+6)<0},集合B={-3,-2,-1,0,1},则A∩B等于(  )
A.B.{-3,-2}C.{-3,-2,-1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,a,b,c分别为A,B,C的对边,cos2$\frac{B}{2}$=$\frac{a+c}{2c}$,则△ABC是(  )
A.直角三角形B.正三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其一个顶点为B(0,4),离心率为$\frac{\sqrt{5}}{5}$,直线l交椭圆C于M,N两点.
(1)求椭圆C的标准方程;
(2)若直线l的方程为y=x-4,求弦MN的长;
(3)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-4<x<1},B={x|($\frac{1}{2}$)x≥2}.
(1)求A∩B,A∪B;
(2)设函数f(x)=$\sqrt{lo{g}_{4}(2x-3)}$的定义域为C,求(∁RA)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线过点P(4,1),且它的两条渐近线方程为x±2y=0
(1)求双曲线的方程
(2)写出它的顶点坐标,焦点坐标,并求离心率e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,则“x-2<1”是“x2+x-2>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案