【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为( ,0),求θ的最小值.
【答案】
(1)解:根据表中已知数据,解得A=5,ω=2,φ=﹣ .数据补全如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | 0 | ﹣5 | 0 |
且函数表达式为f(x)=5sin(2x﹣ )
(2)解:由(Ⅰ)知f(x)=5sin(2x﹣ ),得g(x)=5sin(2x+2θ﹣ ).
因为y=sinx的对称中心为(kπ,0),k∈Z.
令2x+2θ﹣ =kπ,解得x= ,k∈Z.
由于函数y=g(x)的图象关于点( ,0)成中心对称,令 = ,
解得θ= ,k∈Z.由θ>0可知,当K=1时,θ取得最小值
【解析】(1)根据表中已知数据,解得A=5,ω=2,φ=﹣ .从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣ ).(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g(x)=5sin(2x+2θ﹣ ).令2x+2θ﹣ =kπ,解得x= ,k∈Z.令 = ,解得θ= ,k∈Z.由θ>0可得解.
科目:高中数学 来源: 题型:
【题目】定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设z1=2x+1+(x2﹣3x+2)i,z2=x2﹣2+(x2+x﹣6)i(x∈R).
(1)若z1是纯虚数,求实数x的取值范围;
(2)若z1>z2 , 求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x(x+a)﹣lnx,其中a为常数.
(1)当a=﹣1时,求f(x)的极值;
(2)若f(x)是区间 内的单调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查喜爱运动是否和性别有关,我们随机抽取了50名对象进行了问卷调查得到了如下的2×2列联表:
喜爱运动 | 不喜爱运动 | 合计 | |
男性 | 5 | ||
女性 | 10 | ||
合计 | 50 |
若在全部50人中随机抽取2人,抽到喜爱运动和不喜爱运动的男性各一人的概率为 .
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=
(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜爱运动与性别有关?说明你的理由..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)求函数的单调区间;
(2)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,则说明理由;
(3)关于的方程在上恰有两个相异实根,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com