精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①已知a,b,m都是正数,且
a+m
b+m
a
b
,则a<b;
②若函数f(x)=lg(ax+1)的定义域是{x|x<1},则a<-1;
③已知x∈(0,π),则y=sinx+
2
sinx
的最小值为2
2

④已知a、b、c成等比数列,a、x、b成等差数列,b、y、c也成等差数列,则
a
x
+
c
y
的值等于2;
⑤已知函数f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),则b的取值范围为(2-
2
,2+
2
).
其中正确命题的序号是
 
考点:命题的真假判断与应用
专题:简易逻辑
分析:①利用不等式的性质即可得出;
②取a=-2即可判断出;
③换元利用函数的单调性即可得出;
④先求出函数f(x)的值域,由f(a)=g(b),可知两个函数的值域相同,即可得出.
解答: 解:对于①,由且
a+m
b+m
a
b
,又a,b,m都是正数,∴b(a+m)-a(b+m)=m(b-a)>0,∴b-a>0,即a<b.故①正确;
对于②,令a=-2,此时函数f(x)=lg(-2x+1)的定义域是{x|x<
1
2
},不是{x|x<1},故②错误;
对于③,设sinx=t∈[0,1],则y=t+
2
t
,∵函数y=t+
2
t
在区间[0,1]上单调递减,
∴此函数的最小值是f(1)=3,即y=sinx+
2
sinx
的最小值为3,故③错误;
对于④,由题意,b2=ac,2x=a+b,2y=b+c,∴
a
x
+
c
y
=
2a
a+b
+
2c
b+c
=
4ac+2ab+2bc
ab+ac+b2+bc
=
4ac+2ab+2bc
2ac+ab+bc
=2,故④正确;
对于⑤,由题意,f(x)=ex-1>-1,
若有f(a)=g(b),则g(b)=-b2+4b-3>-1,解得2-
2
<b<2+
2
.故⑤正确.
综上可知:只有①④⑤正确.
故答案为:①④⑤.
点评:本题考查了函数的单调性值域、一元二次不等式的解法等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(Ⅰ)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;
(Ⅱ)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所经过的定点F恰好是中心在原点的椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)点A的坐标为(-2,1),M为椭圆C上任意一点,求|MF|+|MA|的最大值;
(Ⅲ)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)为不等式组
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面区域上一点,则x+2y取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线ρ(sinθ-cosθ)=a与曲线ρ=2cosθ-4sinθ相交于A,B两点,若|AB|=2
3
,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(m-2)x2-4mx+2m-6的图象与x轴的负半轴有交点,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.
给出下列命题:
①f(
1
4
)=1;
②f(x)在定义域(0,1)上单调递增;
③f(x)为偶函数; ④f(x)=-f(1-x);
⑤关于m的不等式|f(m)|≤1的解集为[
1
4
,1]

则所有正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5;则f(x)=a2x2+a1x+a0的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列三个命题:
①在区间[0,1]内任取两个实数x,y,则事件“x2+y2>1成立”的概率是1-
π
4

②函数f(x)关于(3,0)点对称,满足f(6+x)=f(6-x),且当x∈[0,3]时函数为增函数,则f(x)在[6,9]上为减函数;
③满足A=30°,BC=1,AB=
3
的△ABC有两解.
其中正确命题的个数为(  )
A、1B、2C、3D、0

查看答案和解析>>

同步练习册答案