精英家教网 > 高中数学 > 题目详情
点P(x,y)为不等式组
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面区域上一点,则x+2y取值范围为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设z=x+2y,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
设z=x+2y,则y=-
1
2
x+
z
2

平移直线y=-
1
2
x+
z
2
,由图象可知当直线y=-
1
2
x+
z
2
经过点A(0,-1)时,
直线y=-
1
2
x+
z
2
的截距最小,此时z最小,为z=-2,
当直线y=-
1
2
x+
z
2
在第一象限内和圆相切时,此时z最大.
则圆心到直线x+2y-z=0的距离d=
|z|
1+22
=
|z|
5
=1

解得z=±
5

∴z的最大值为
5

-2≤z≤
5

故x+2y取值范围是[-2,
5
],
故答案为:[-2,
5
].
点评:本题主要考查线性规划的应用,作出平面区域,利用数形结合以及直线和圆的位置关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=x+
a
x
的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-1-ax,(a∈R).
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)试探究函数F(x)=f(x)-xlnx在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.
(Ⅲ)若g(x)=ln(ex-1)-lnx,且f(g(x))<f(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,且|F1F2|=2
2
,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.
(1)求椭圆方程;
(2)设椭圆与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的流程图,则输出S的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从正方体的六个面中任意选取3个面,其中有2个面不相邻的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知a,b,m都是正数,且
a+m
b+m
a
b
,则a<b;
②若函数f(x)=lg(ax+1)的定义域是{x|x<1},则a<-1;
③已知x∈(0,π),则y=sinx+
2
sinx
的最小值为2
2

④已知a、b、c成等比数列,a、x、b成等差数列,b、y、c也成等差数列,则
a
x
+
c
y
的值等于2;
⑤已知函数f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),则b的取值范围为(2-
2
,2+
2
).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx+
3
cosx,x∈[-
3
π
3
]的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2-2x+5=0的一个根是(  )
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

同步练习册答案