精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R
(1)求函数f(x)的最小正周期;
(2)若函数y=g(x)的图象和y=f(x)的图象关于直线x=$\frac{π}{3}$对称,求g(x)在[$\frac{π}{8}$,$\frac{2π}{3}$]上最大值和最小值.

分析 (1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),由周期公式即可得解.
(2)在y=g(x)上任取一点,据对称行求出其对称点,利用对称点在y=f(x)上,求出g(x)的解析式,求出整体角的范围,据三角函数的有界性求出最值.

解答 解:(1)∵f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x+2cos2x-1
=sin2x+1+cos2x-1
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴由周期公式可得:函数f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵函数y=g(x)的图象和y=f(x)的图象关于直线x=$\frac{π}{3}$对称,
∴在y=g(x)的图象上任取一点(x,g(x)),它关于x=$\frac{π}{3}$的对称点($\frac{2π}{3}$-x,g(x)).
由题设条件,点($\frac{2π}{3}$-x,g(x))在y=f(x)的图象上,
从而g(x)=f($\frac{2π}{3}$-x)=$\sqrt{2}$sin[2($\frac{2π}{3}$-x)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x-$\frac{7π}{12}$)
当x∈[$\frac{π}{8}$,$\frac{2π}{3}$]时,2x-$\frac{7π}{12}$∈[-$\frac{π}{3}$,$\frac{3π}{4}$]时,
因此y=g(x)在区间[$\frac{π}{8}$,$\frac{2π}{3}$]上的最大值为gmax=$\sqrt{2}$sin$\frac{π}{2}$=$\sqrt{2}$.
最大值为gmin=$\sqrt{2}$sin(-$\frac{π}{3}$)=-$\frac{\sqrt{6}}{2}$.

点评 本题主要考查了利用三角函数恒等变换化简三角函数、利用轴对称性求函数的解析式、利用整体角处理的思想求出最值等知识的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.数列{an}满足a1=1,a2=r(r>0),令bn=an•an+1,{bn}是公比为q(q≠0,q≠-1)的等比数列,设cn=a2n-1+a2n
(1)求证:cn=(1+r)•qn-1
(2)设{cn}的前n项和为Sn,求$\lim_{n→∞}\frac{1}{S_n}$的值;
(3)设{cn}前n项积为Tn,当q=-$\frac{1}{2}$时,Tn的最大值在n=8和n=9的时候取到,求n为何值时,Tn取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=18,an+1=an+2,在等比数列{bn}中,b3=a6,b4=a2.求:
(1)数列{an}和{bn}的通项公式;
(2)数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在椭圆$\frac{{x}^{2}}{4}$+y2=1上任取一点P,过点P作x轴的垂线段PD,D为垂足,延长线段DP到Q,使得|DP|=|PQ|,
(Ⅰ)求点Q的轨迹方程;
(Ⅱ)直线y=k(x+4)-1与点Q的轨迹有两个不同交点A、B,若|AB|≥2$\sqrt{3}$,求斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=lnx,g(x)=(2-a)(x-1)-2f(x).
(1)当a=1时,求函数g(x)的单调区间;
(2)设A(x1,y1),B(x2,y2)是函数y=f(x)图象上任意不同两点,线段AB中点为C(x0,y0),直线AB的斜率为k.证明:k>f′(x0
(3)设F(x)=|f(x)|+$\frac{b}{x+1}$(b>0),对任意x1,x2∈(0,2],x1≠x2,都有$\frac{F({x}_{1})-F({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G
(Ⅰ)求EG的长;
(Ⅱ)连接FD,判断FD与AB是否平行,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x+sinx.
(1)求函数f(x)的值域(x∈R);
(2)f(x)在区间[0,$\frac{π}{2}$]上是不是单调函数?若不是,说明理由,并写出单调区间;若是,指出它的单调性.

查看答案和解析>>

同步练习册答案