精英家教网 > 高中数学 > 题目详情
如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1、CB1的中点,DE⊥面CBB1
(1)证明:DE∥面ABC;
(2)求四棱锥C-ABB1A1与圆柱OO1的体积比;
(3)若BB1=BC,求CA1与面BB1C所成角的正弦值.
考点:直线与平面平行的判定,棱柱、棱锥、棱台的体积,直线与平面所成的角
专题:空间位置关系与距离
分析:(1)先证明四边形AOED是平行四边形,即可得到 DE∥OA,从而证得DE∥面ABC.
(2)由CA⊥AB,且AA1⊥CA,可得CA⊥面AA1B1B,即CA为四棱锥的高,设圆柱高为h,底半径为r,则V=πr2h,求出椎体的体积,即可得到四棱锥C-ABB1A1与圆柱OO1的体积比.
(3)先证 A1O1⊥面CBB1C1,则∠A1CO1为CA1与面BB1C所成的角,在Rt△A1O1C中,由sin∠A1CO1=
A1O1
A1C
求得CA1与面BB1C所成角的正弦值.
解答: 解:(1)证明:连接EO,OA.∵E,O分别为B1C,BC的中点,∴EO∥BB1
又DA∥BB1,且DA=EO=
1
2
BB1.∴四边形AOED是平行四边形,
即DE∥OA,DE?面ABC.∴DE∥面ABC.
(2)由题DE⊥面CBB1,且由(1)知DE∥OA.∴AO⊥面CBB1,∴AO⊥BC,
∴AC=AB.因BC是底面圆O的直径,得CA⊥AB,且AA1⊥CA,
∴CA⊥面AA1B1B,即CA为四棱锥的高.
设圆柱高为h,底半径为r,则V=πr2h,V=
1
3
h•(
2
r)•(
2
r)=
2
3
hr2
∴V:V=
2

(3)解:作过C的母线CC1,连接B1C1,则B1C1是上底面圆O1的直径,
连接A1O1,得A1O1∥AO,又AO⊥面CBB1C1
∴A1O1⊥面CBB1C1,连接CO1
则∠A1CO1为CA1与面BB1C所成的角,
设BB1=BC=2,则A1C=
6

A1O1=1.(12分)
在Rt△A1O1C中,sin∠A1CO1=
A1O1
A1C
=
6
6
点评:本题考查证明线面平行的方法,求棱锥的体积和直线与平面成的角,找出∠A1CO1为CA1与面BB1C所成的角,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,单位圆(半径为1)的圆心O为坐标原点,它与y轴的正半轴交于点A,与钝角α的终边交于点B(xB,yB),设∠BAO=β,sin2β=
24
25
,求点B(xB,yB)的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,…,xn(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果s为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
π
4
<θ<
π
2
,那么下列各式中正确的是(  )
A、cosθ<tanθ<sinθ
B、sinθ<cosθ<tanθ
C、tanθ<sinθ<cosθ
D、cosθ<sinθ<tanθ

查看答案和解析>>

科目:高中数学 来源: 题型:

P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ是三角形的一个内角,且sinθ+cosθ=
1
2
,则x2sinθ-y2cosθ=1表示(  )
A、焦点在x轴上的椭圆
B、焦点在x轴上的双曲线
C、焦点在y轴上的椭圆
D、焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+
π
3
)(ω>0)的最小正周期为π,则该函数图象(  )
A、关于直线x=
π
4
对称
B、关于直线x=
π
3
对称
C、关于点(
π
4
,0)对称
D、关于点(
π
3
,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

某外商计划在5个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有(  )
A、60种B、70种
C、80种D、120种

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:f(x)=-f(x+
3
2
),f(-1)=1,则f(1)+f(2)+f(3)+…+f(2008)=
 

查看答案和解析>>

同步练习册答案