精英家教网 > 高中数学 > 题目详情
11.已知动圆过定点F(1,0)且与直线?1:x=-1相切.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)设直线?:y=-$\frac{1}{2}$x+b与轨迹C交于A,B两点,若x轴与以AB为直径的圆相切,求该圆的方程.

分析 (Ⅰ)由抛物线的定义知,到定点的距离等于到定直线的距离的点的轨迹为抛物线,所以动圆圆心的轨迹为抛物线,再用求抛物线方程的方法求出轨迹C的方程即可.
(Ⅱ)联立直线y=-$\frac{1}{2}$x+b与y2=4x得y2+8y-8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.

解答 解:(Ⅰ)∵动圆过定点A(1,0),且与直线x=-1相切,
∴曲线C是以点A为焦点,直线x=-1为准线的抛物线,其方程为y2=4x.
(Ⅱ)联立直线y=-$\frac{1}{2}$x+b与y2=4x得:y2+8y-8b=0.
依题意应有△=64+32b>0,解得b>-2.
设A(x1,y1),B(x2,y2),
设圆心Q(x0,y0),则应有x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$=-4.
因为以AB为直径的圆与x轴相切,得到圆半径为r=|y0|=4,
又|AB|=$\sqrt{5}$|y1-y2|=$\sqrt{5(64+32b)}$.
所以|AB|=2r,
即$\sqrt{5(64+32b)}$=8,
解得b=-$\frac{8}{5}$.
所以x0=$\frac{{x}_{1}+{x}_{2}}{2}$=2b+8=$\frac{24}{5}$,
所以圆心为($\frac{24}{5}$,-4).
故所求圆的方程为(x-$\frac{24}{5}$)2+(y+4)2=16.

点评 本题主要考查抛物线方程的求解,考查直线与抛物线的位置关系,考查圆的方程的求法,同时考查解析几何的基本思想方法和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知M(3,y0)(y0>0)为抛物线C:y2=2px(p>0)上一点,F为抛物线C的焦点,且|MF|=5.
(1)求抛物线C方程;
(2)MF的延长线交抛物线于另一点N,求N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}$x2-ax-a,x∈R,其中a>0.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)讨论函数f(x)在区间(-2,0)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设Sn为数列{an}的前n项和,且a1=1,nan+1=(n+2)Sn+n(n+1),n∈N*
(Ⅰ)证明:数列{${\frac{S_n}{n}$+1}为等比数列;
(Ⅱ)求 Tn=S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\vec a$、$\vec b$是单位向量,其夹角为120°,若实数x、y满足|x$\vec a$+y$\vec b}$|=$\sqrt{6}$,则x2+y2的取值范围是[4,12].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}满足a3=5,a10=-9,Sn是数列{an}的前n项和,则使得Sn最大的序号n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知an=log(n+1)(n+2),(n∈N*),我们把使乘积a1,a2,a3,…an为整数的数n叫做“劣数”,则在区间(15,2015)内的所有劣数的和为2004.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P到椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦点M和到直线x=-1的距离相等.
(1)求点P的轨迹方程C;
(2)O为坐标原点,过点M的直线与曲线C相交于A,B两点,满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=(6,4),曲线C上一动点N从点A运动到点B,求△ABN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题p:$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,命题q:∠BAC是钝角.p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案