精英家教网 > 高中数学 > 题目详情
1.命题p:$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,命题q:∠BAC是钝角.p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义结合向量数量积的应用进行判断即可.

解答 解:若$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,即|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC<0,
即-1≤cos∠BAC<0,则$\frac{π}{2}$<∠BAC≤π,则∠BAC是钝角不一定成立,
反之若∠BAC是钝角,则cos∠BAC<0,即$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC<0,
则$\overrightarrow{AB}$•$\overrightarrow{AC}$<0成立,
即p是q的必要不充分条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,利用向量数量积的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知动圆过定点F(1,0)且与直线?1:x=-1相切.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)设直线?:y=-$\frac{1}{2}$x+b与轨迹C交于A,B两点,若x轴与以AB为直径的圆相切,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知下列三个正确的结论:
①在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立
②在四边形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立
③在五边形ABCDE中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.
(1)猜想在n边形A1,A2,…An中,有怎样的不等式成立?
(2)证明:在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上单调递减,则b的取值范围为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某水厂的蓄水池中有400吨水,每天零点开始由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t小时内向居民供水总量为100$\sqrt{6t}$(0≤t≤24),则每天$\frac{25}{6}$点时蓄水池中的存水量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在(0,+∞)的函数f(x)为单调函数,对任意的x∈(0,+∞)恒有f[f(x)-log4x]=5.x0是方程f(x)-f′(x)=4的一个根,则x0所在区间为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是(  )
A.0<a-1<b-1<1B.0<b-1<a<1C.0<b<a-1<1D.0<a-1<b<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某射手每次射击命中目标的概率都是0.8,设连续射击10次命中目标的次数为X,则随机变量X的方差D(X)=1.6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线l经过抛物线y=x2-3x+1与y轴的交点,且与直线x+2y=0平行,则直线l的方程是x+2y-2=0.

查看答案和解析>>

同步练习册答案