精英家教网 > 高中数学 > 题目详情
16.某水厂的蓄水池中有400吨水,每天零点开始由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t小时内向居民供水总量为100$\sqrt{6t}$(0≤t≤24),则每天$\frac{25}{6}$点时蓄水池中的存水量最少.

分析 根据题意先设t小时后,蓄水池中的存水量为y吨.写出蓄水池中的存水量的函数表达式,再利用换元法求此函数的最小值即得.

解答 解:设t小时后,蓄水池中的存水量为y吨.
则y=400+60t-100$\sqrt{6t}$(0≤t≤24),
设u=$\sqrt{t}$,则u∈[0,2$\sqrt{6}$],y=60u2-100$\sqrt{6}$u+400
∴当u=$\frac{5\sqrt{6}}{6}$即t=$\frac{25}{6}$时,蓄水池中的存水量最少.
故答案为:$\frac{25}{6}$.

点评 本小题主要考查函数模型的选择与应用,解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知$\vec a$、$\vec b$是单位向量,其夹角为120°,若实数x、y满足|x$\vec a$+y$\vec b}$|=$\sqrt{6}$,则x2+y2的取值范围是[4,12].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,sn为其前几项和,且sn=2an-$\frac{1}{4}$
(1)求数列{an}的通项公式an及sn
(2)若数列{bn}满足bn=nan,求数列{bn}的前几项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果满足9x-a≥0>8x-b的实数x的整数值只有1,2,3,那么满足这个条件的整式a,b的有序实数对(a,b)共有(  )
A.48对B.63对C.64对D.72对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线y=kx+b通过第一、三、四象限,则有(  )
A.d>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题p:$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,命题q:∠BAC是钝角.p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某医院眼科某天测量300名求医者的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列.
(1)求出最大频率;
(2)求出视力在4.6-5.0的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知某个车轮旋转的角度α(弧度)与时间t(秒)的函数关系是α=$\frac{2π}{0.64}$t2(t≥0),则车轮启动后第1.6秒时的瞬时角速度是(  )
A.20π弧度/秒B.10π弧度/秒C.8π弧度/秒D.5π弧度/秒

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设平面向量组ai (i=1,2,3,…)满足:①|ai|=1;②ai•ai+1=0,设Tn=|a1+a2+…+an|(n≥2),则T4的最大值为$2\sqrt{2}$.

查看答案和解析>>

同步练习册答案