精英家教网 > 高中数学 > 题目详情
9.f(x)=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上单调递减,则b的取值范围为(-∞,-1].

分析 根据函数在(-1,+∞)上是减函数,对函数f(x)进行求导,判断出f′(x)<0进而根据导函数的解析式求得b的范围.

解答 解:由题意可知f′(x)=-x+$\frac{b}{x+2}$<0,
在x∈(-1,+∞)上恒成立,即b<x(x+2)在x∈(-1,+∞)上恒成立,
∵f(x)=x(x+2)=x2+2x且x∈(-1,+∞)
∴f(x)>-1
∴要使b<x(x+2),需b≤-1,
故b的取值范围为(-∞,-1],
故答案为:(-∞,-1].

点评 本题主要考查了函数单调性的应用.利用导函数来判断函数的单调性,是常用的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设Sn为数列{an}的前n项和,且a1=1,nan+1=(n+2)Sn+n(n+1),n∈N*
(Ⅰ)证明:数列{${\frac{S_n}{n}$+1}为等比数列;
(Ⅱ)求 Tn=S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P到椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦点M和到直线x=-1的距离相等.
(1)求点P的轨迹方程C;
(2)O为坐标原点,过点M的直线与曲线C相交于A,B两点,满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=(6,4),曲线C上一动点N从点A运动到点B,求△ABN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的极坐标方程为ρcosθ-$\sqrt{3}$ρsinθ=5,圆C的参数方程为$\left\{\begin{array}{l}{x=5+2cosα}\\{y=4+2sinα}\end{array}\right.$(α为参数,α∈[0,2π]).
(1)求直线l和圆C的直角坐标方程;
(2)判断直线l与圆C的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果满足9x-a≥0>8x-b的实数x的整数值只有1,2,3,那么满足这个条件的整式a,b的有序实数对(a,b)共有(  )
A.48对B.63对C.64对D.72对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(-$\sqrt{3}$,1),点B在y轴上,直线AB的倾斜角为120°,则点B的坐标为(0,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题p:$\overrightarrow{AB}$•$\overrightarrow{AC}$<0,命题q:∠BAC是钝角.p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{2{a}^{x}}{{a}^{x}-1}$+loga$\frac{x-1}{x+1}$(a>0且a≠1),且f(m)=7(m≠0),则f(-m)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设两个非零向量$\overrightarrow a$与$\overrightarrow b$不共线,若$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b,\overrightarrow{BC}=2\overrightarrow a+8\overrightarrow b,\overrightarrow{CD}$=$3(\overrightarrow a-\overrightarrow b)$,则(  )
A.A,B,C三点共线B.B,C,D三点共线C.A,C,D三点共线D.A,B,D三点共线

查看答案和解析>>

同步练习册答案