精英家教网 > 高中数学 > 题目详情
6.函数f(x)=$\frac{1}{lgx}$+$\sqrt{2-x}$ 的定义域为(  )
A.(-∞,2]B.(0,1)∪(1,2)C.(0,2]D.(0,2)

分析 根据函数f(x)的解析式,列出满足题意的不等式组,求出解集即可.

解答 解:∵函数f(x)=$\frac{1}{lgx}$+$\sqrt{2-x}$,
∴$\left\{\begin{array}{l}{lgx≠0}\\{2-x≥0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x>0且x≠1}\\{x≤2}\end{array}\right.$,
即0<x<1或1<x≤2;
∴f(x)的定义域为(0,1)∪(1,2].
故选:B.

点评 本题考查了利用函数的解析式求函数定义域的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{100}$$-\frac{{y}^{2}}{64}$=1的渐近线方程为(  )
A.y=±$\frac{4}{5}$xB.y=±$\frac{5}{4}$xC.y=±$\frac{16}{25}$xD.y=±$\frac{25}{16}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一空间几何体的三视图如图所示,则该几何体的体积为$\frac{7}{6}$表面积为$\frac{11+4\sqrt{2}+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线y=x+b与曲线x=$\sqrt{1-{y}^{2}}$有且仅有1个公共点,则b的取值范围是(  )
A.|b|=$\sqrt{2}$B.-1<b≤1或b=-$\sqrt{2}$C.-1≤b≤1D.-1≤b≤1 或b=$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A地侦察发现,在南偏东60°方向的B地,有一艘某国军舰正以每小时13海里的速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国渔民.此时,C地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的距离赶往C地救援我国渔民,能不能及时赶到?($\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{6}$≈2.45)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,P是圆O外一点,PA、PB是圆O的两条切线,切点分别为A、B,PA的中点为M,过M作圆O的一条割线交圆O于C、D两点,若PB=2$\sqrt{3}$,MC=1,则CD=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,${a_1}=\frac{1}{25}$,第10项开始比1大,记$t=\lim_{n→∞}\frac{{{a_n}+{S_n}}}{n^2}$,则t的取值范围是(  )
A.$t>\frac{4}{75}$B.$\frac{8}{75}<t≤\frac{3}{25}$C.$\frac{4}{75}<t<\frac{3}{50}$D.$\frac{4}{75}<t≤\frac{3}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点是Fl,P是双曲线右支上的点,若线段PF1与y轴的交点M恰好为PF1的中点,且|OM|=a,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-2x+{a}^{2},x≤1}\\{\frac{15a}{3x+1},x>1}\end{array}\right.$在点x=1处连续,则实数a等于(  )
A.4B.-$\frac{1}{4}$C.-$\frac{1}{4}$或-4D.-$\frac{1}{4}$或4

查看答案和解析>>

同步练习册答案