精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,x∈R).当x=1时,函数f(x)的极植为-3-c.
(1)试确定a,b的值;
(2)求f(x)的单调区间;
(3)若对于任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
分析:(1)求出f'(x),因为当x=1时,函数f(x)的极植为-3-c.得到f(1)=-3-c,f′(1)=0代入得f(x)的解析式即可;(2)令f′(x)=0求出函数的驻点,利用驻点讨论函数的增减性得到函数的单调区间即可;
(3)要使不等式f(x)≥-2c2恒成立即-6x3-9x2-c≥-2c2对任意x>0恒成立,则函数的最小值大于等于-2c2得到关于c的不等式即可求出c的取值范围.
解答:解:(1)由f(x)=ax3+bx2-c,得f'(x)=3ax2+2bx,
当x=1时,f(x)的极值为-3-c,
f′(1)=0
f(1)=-3-c
,得
3a+2b=0
a+b-c=-3-c
,∴
a=6
b=-9

∴f(x)=6x3-9x2-c.
(2)∵f(x)=6x3-9x2-c,∴f′(x)=18x2-18x=18x(x-1),
令f′(x)=0,得x=0或x=1.
当x<0或x>1时,f′(x)>0,f(x)单调递增;当0<x<1时,f′(x)<0,f(x)单调递减;
∴函数f(x)的单调递增区间是(-∞,0)和(1,+∞),单调递减区间是[0,1].
(3)∵f(x)≥-2c2对任意x>0恒成立,∴-6x3-9x2-c≥-2c2对任意x>0恒成立,
∵当x=1时,f(x)min=-3-c,∴-3-c≥-2c2,得2c2-c-3≥0,
∴c≤-1或c≥
3
2

∴c的取值范围是(-∞,-1]∪[
3
2
,+∞)
点评:考查学生利用导数研究函数极值及单调性的能力,利用导数求闭区间上极值的能力,以及理解掌握不等式恒成立的条件的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案