精英家教网 > 高中数学 > 题目详情
16.设点M(x0,x0+$\sqrt{2}$),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则X0的取值范围$[-\sqrt{2},0]$.

分析 根据直线和圆的位置关系,利用数形结合即可得到结论.

解答 解:点M(x0,x0+$\sqrt{2}$)在直线y=x+$\sqrt{2}$上,与圆O:x2+y2=1相切,
要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,
则∠OMN的最大值大于或等于45°时,一定存在点N,使得∠OMN=45°,
而当MN与圆相切时∠OMN取得最大值,此时有MN=1,
∴x0的取值范围为$[-\sqrt{2},0]$.
故答案为:$[-\sqrt{2},0]$.

点评 本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆锥曲线C:$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α是参数)和定点A(0,$\sqrt{3}$),F1,F2分别是曲线C的左、右焦点.
(1)以原点为极点,x轴的正半轴为极轴建立坐标系,求直线AF2的极坐标系方程.
(2)若P是曲线C上的动点,求|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)的定义域为D,函数g(x)的定义域为E.规定:函数$h(x)=\left\{\begin{array}{l}f(x)g(x),x∈D且x∈E\\ f(x),x∈D且x∉E\\ g(x),x∈E且x∉D\end{array}\right.$
(Ⅰ)若函数$f(x)=\frac{1}{x-1},g(x)={x^2}$,写出函数h(x)的解析式;
(Ⅱ)判断问题(Ⅰ)中函数h(x)在(1,+∞)上的单调性;
(Ⅲ)若g(x)=f(x+α),其中α是常数,且α∈(0,π),请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn为等差数列{an}的前n项和且a1=3,Sn=n2+Bn+C(其中B,C为常数).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$,Tn为数列{bn}的前n项和.求证:$\frac{1}{2}$≤Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2+5x-6=0”的必要不充分条件
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.命题“在△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=loga(x+1)(a>0,a≠1)
(1)当a>1时,证明:?x1,x2∈(-1,+∞),x1≠x2,有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$;
(2)若曲线y=f(x)有经过点(0,1)的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{|{4+3i}|}}{3-4i}$(i为虚数单位)的共轭复数对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若全集U={x|x2≤4},A={x|-2≤x≤0},则∁UA=(  )
A.(0,2)B.[0,2)C.(0,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,点D,E分别是三棱柱ABC-A1B1C1的棱AB,B1C1的中点,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$.
(1)用向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示向量$\overrightarrow{DE}$;
(2)已知向量$\overrightarrow{m}$是平面ACC1A1的一个法向量,利用$\overrightarrow{m}$与$\overrightarrow{DE}$的关系,证明:DE∥平面ACC1A1

查看答案和解析>>

同步练习册答案