分析 利用导数研究函数的单调性,利用单调性判断a、b、c的大小.
解答 解:函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,不等式f(x)+xf′(x)<0恒成立,
即xf(x)的导数小于零恒成立,故函数y=xf(x)在(-∞,0)上单调递减,
故 y=xf(x)是偶函数,且它在(0,+∞)上单调递增.
∵30.3>1>logπ3>0>${log}_{3}\frac{1}{3}$=-1,
∵a=30.3f(30.3),b=(logπ3)f(logπ3),c=(${log}_{3}\frac{1}{3}$)f(${log}_{3}\frac{1}{3}$)=-f(-1)=1•f(1),
∴a>c>b,
故答案为:a>c>b.
点评 本题主要考查利用导数研究函数的单调性,利用单调性比较几个数的大小,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥n,n?α,则m∥α | B. | 若l∥n,m⊥n,则l∥m | ||
| C. | 若l⊥α,m⊥β,且l⊥m,则α⊥β | D. | 若α⊥β,α∩β=m,且m⊥n,则n⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $6\sqrt{2}$ | B. | 35 | C. | 28 | D. | 40 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com