| A. | $6\sqrt{2}$ | B. | 35 | C. | 28 | D. | 40 |
分析 设A(-1,a),B(m,n),且n2=16m,利用向量共线的坐标表示,由$\overrightarrow{FA}=5\overrightarrow{FB}$,确定A,B的坐标,即可求得|AB|.
解答 解:由抛物线C:y2=16x,可得F(4,0),
设A(-1,a),B(m,n),且n2=16m,
∵$\overrightarrow{FA}=5\overrightarrow{FB}$,
∴-1-4=5(m-4),∴m=3,
∴n=±4$\sqrt{3}$,
∵a=5n,∴a=±20$\sqrt{3}$,
∴|AB|=$\sqrt{16+(16\sqrt{3})^{2}}$=28.
故选:C.
点评 本题考查抛物线的性质,考查向量知识的运用,考查学生的计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$ | B. | $\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{2}$$\overrightarrow{b}$ | C. | $\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{3}$$\overrightarrow{b}$ | D. | $\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{19}$ | B. | $\frac{27}{76}$ | C. | $\frac{3}{76}$ | D. | $\frac{3}{19}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com